Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Andrea Desbats is active.

Publication


Featured researches published by Maria Andrea Desbats.


Journal of Inherited Metabolic Disease | 2015

Genetic bases and clinical manifestations of coenzyme Q 10 (CoQ 10 ) deficiency

Maria Andrea Desbats; Giada Lunardi; Mara Doimo; Eva Trevisson; Leonardo Salviati

Coenzyme Q10 is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ10 deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ10. It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ10 deficiency can also be observed in patients with defects unrelated to CoQ10 biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ10. In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.In this review we will focus on CoQ10 biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ10 deficiency, and on the diagnostic strategies for these conditions.


Journal of Medical Genetics | 2012

Haploinsufficiency of COQ4 causes coenzyme Q10 deficiency

Leonardo Salviati; Eva Trevisson; Maria Angeles Rodriguez Hernandez; Alberto Casarin; Vanessa Pertegato; Mara Doimo; Matteo Cassina; Caterina Agosto; Maria Andrea Desbats; Geppo Sartori; Sabrina Sacconi; Luigi Memo; Orsetta Zuffardi; Rafael Artuch; Catarina M. Quinzii; Salvatore DiMauro; Michio Hirano; Carlos Santos-Ocaña; Plácido Navas

Background COQ4 encodes a protein that organises the multienzyme complex for the synthesis of coenzyme Q10 (CoQ10). A 3.9 Mb deletion of chromosome 9q34.13 was identified in a 3-year-old boy with mental retardation, encephalomyopathy and dysmorphic features. Because the deletion encompassed COQ4, the patient was screened for CoQ10 deficiency. Methods A complete molecular and biochemical characterisation of the patients fibroblasts and of a yeast model were performed. Results The study found reduced COQ4 expression (48% of controls), CoQ10 content and biosynthetic rate (44% and 43% of controls), and activities of respiratory chain complex II+III. Cells displayed a growth defect that was corrected by the addition of CoQ10 to the culture medium. Knockdown of COQ4 in HeLa cells also resulted in a reduction of CoQ10. Diploid yeast haploinsufficient for COQ4 displayed similar CoQ deficiency. Haploinsufficency of other genes involved in CoQ10 biosynthesis does not cause CoQ deficiency, underscoring the critical role of COQ4. Oral CoQ10 supplementation resulted in a significant improvement of neuromuscular symptoms, which reappeared after supplementation was temporarily discontinued. Conclusion Mutations of COQ4 should be searched for in patients with CoQ10 deficiency and encephalomyopathy; patients with genomic rearrangements involving COQ4 should be screened for CoQ10 deficiency, as they could benefit from supplementation.


Molecular Syndromology | 2014

Genetics of Coenzyme Q10 Deficiency

Mara Doimo; Maria Andrea Desbats; Cristina Cerqua; Matteo Cassina; Eva Trevisson; Leonardo Salviati

Coenzyme Q10 (CoQ10) is an essential component of eukaryotic cells and is involved in crucial biochemical reactions such as the production of ATP in the mitochondrial respiratory chain, the biosynthesis of pyrimidines, and the modulation of apoptosis. CoQ10 requires at least 13 genes for its biosynthesis. Mutations in these genes cause primary CoQ10 deficiency, a clinically and genetically heterogeneous disorder. To date mutations in 8 genes (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) have been associated with CoQ10 deficiency presenting with a wide variety of clinical manifestations. Onset can be at virtually any age, although pediatric forms are more common. Symptoms include those typical of respiratory chain disorders (encephalomyopathy, ataxia, lactic acidosis, deafness, retinitis pigmentosa, hypertrophic cardiomyopathy), but some (such as steroid-resistant nephrotic syndrome) are peculiar to this condition. The molecular bases of the clinical diversity of this condition are still unknown. It is of critical importance that physicians promptly recognize these disorders because most patients respond to oral administration of CoQ10.


Cell Metabolism | 2017

Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence

Caterina Tezze; Vanina Romanello; Maria Andrea Desbats; Gian Paolo Fadini; Mattia Albiero; Giulia Favaro; Stefano Ciciliot; Maria Eugenia Soriano; Valeria Morbidoni; Cristina Cerqua; Stefan Loefler; Helmut Kern; Claudio Franceschi; Stefano Salvioli; Maria Conte; Bert Blaauw; Sandra Zampieri; Leonardo Salviati; Luca Scorrano; Marco Sandri

Summary Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.


European Journal of Human Genetics | 2015

Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure.

Maria Andrea Desbats; Annalisa Vetro; Ivan Limongelli; Giada Lunardi; Alberto Casarin; Mara Doimo; Marco Spinazzi; Corrado Angelini; Giovanna Cenacchi; Alberto Burlina; Maria Angeles Rodriguez Hernandez; Lino Chiandetti; Maurizio Clementi; Eva Trevisson; Plácido Navas; Orsetta Zuffardi; Leonardo Salviati

Coenzyme Q10 deficiency is a clinically and genetically heterogeneous disorder, with manifestations that may range from fatal neonatal multisystem failure, to adult-onset encephalopathy. We report a patient who presented at birth with severe lactic acidosis, proteinuria, dicarboxylic aciduria, and hepatic insufficiency. She also had dilation of left ventricle on echocardiography. Her neurological condition rapidly worsened and despite aggressive care she died at 23 h of life. Muscle histology displayed lipid accumulation. Electron microscopy showed markedly swollen mitochondria with fragmented cristae. Respiratory-chain enzymatic assays showed a reduction of combined activities of complex I+III and II+III with normal activities of isolated complexes. The defect was confirmed in fibroblasts, where it could be rescued by supplementing the culture medium with 10 μM coenzyme Q10. Coenzyme Q10 levels were reduced (28% of controls) in these cells. We performed exome sequencing and focused the analysis on genes involved in coenzyme Q10 biosynthesis. The patient harbored a homozygous c.545T>G, p.(Met182Arg) alteration in COQ2, which was validated by functional complementation in yeast. In this case the biochemical and morphological features were essential to direct the genetic diagnosis. The parents had another pregnancy after the biochemical diagnosis was established, but before the identification of the genetic defect. Because of the potentially high recurrence risk, and given the importance of early CoQ10 supplementation, we decided to treat with CoQ10 the newborn child pending the results of the biochemical assays. Clinicians should consider a similar management in siblings of patients with CoQ10 deficiency without a genetic diagnosis.


Biochimica et Biophysica Acta | 2014

Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q10 biosynthesis.

Theresa Nguyen; Alberto Casarin; Maria Andrea Desbats; Mara Doimo; Eva Trevisson; Carlos Santos-Ocaña; Plácido Navas; Catherine F. Clarke; Leonardo Salviati

Coq5 catalyzes the only C-methylation involved in the biosynthesis of coenzyme Q (Q or ubiquinone) in humans and yeast Saccharomyces cerevisiae. As one of eleven polypeptides required for Q production in yeast, Coq5 has also been shown to assemble with the multi-subunit complex termed the CoQ-synthome. In humans, mutations in several COQ genes cause primary Q deficiency, and a decrease in Q biosynthesis is associated with mitochondrial, cardiovascular, kidney and neurodegenerative diseases. In this study, we characterize the human COQ5 polypeptide and examine its complementation of yeast coq5 point and null mutants. We show that human COQ5 RNA is expressed in all tissues and that the COQ5 polypeptide is associated with the mitochondrial inner membrane on the matrix side. Previous work in yeast has shown that point mutations within or adjacent to conserved COQ5 methyltransferase motifs result in a loss of Coq5 function but not Coq5 steady state levels. Here, we show that stabilization of the CoQ-synthome within coq5 point mutants or by over-expression of COQ8 in coq5 null mutants permits the human COQ5 homolog to partially restore coq5 mutant growth on respiratory media and Q6 content. Immunoblotting against the human COQ5 polypeptide in isolated yeast mitochondria shows that the human Coq5 polypeptide migrates in two-dimensional blue-native/SDS-PAGE at the same high molecular mass as other yeast Coq proteins. The results presented suggest that human and Escherichia coli Coq5 homologs expressed in yeast retain C-methyltransferase activity but are capable of rescuing the coq5 yeast mutants only when the CoQ-synthome is assembled.


Human Molecular Genetics | 2016

The COQ2 genotype predicts the severity of coenzyme Q10 deficiency

Maria Andrea Desbats; Valeria Morbidoni; Micol Silic-Benussi; Mara Doimo; Vincenzo Ciminale; Matteo Cassina; Sabrina Sacconi; Michio Hirano; Giuseppe Basso; Fabien Pierrel; Plácido Navas; Leonardo Salviati; Eva Trevisson

COQ2 (p-hydroxybenzoate polyprenyl transferase) encodes the enzyme required for the second step of the final reaction sequence of Coenzyme Q10 (CoQ) biosynthesis. Its mutations represent a frequent cause of primary CoQ deficiency and have been associated with the widest clinical spectrum, ranging from fatal neonatal multisystemic disease to late-onset encephalopathy. However, the reasons of this variability are still unknown.We have characterized the structure of human COQ2, defined its subcellular localization and developed a yeast model to validate all the mutant alleles reported so far.Our findings show that the main functional transcript of COQ2 is shorter than what was previously reported and that its protein product localizes to mitochondria with the C-terminus facing the intermembrane space. Complementation experiments in yeast showed that the residual activity of the mutant proteins correlates with the clinical phenotypes observed in patients.We defined the structure of COQ2 with relevant implications for mutation screening in patients and demonstrated that, contrary to other COQ gene defects such as ADCK3, there is a correlation between COQ2 genotype and patients phenotype.


Human Mutation | 2013

Functional analysis of missense mutations of OAT, causing gyrate atrophy of choroid and retina.

Mara Doimo; Maria Andrea Desbats; Maria Cristina Baldoin; Elisabetta Lenzini; Giuseppe Basso; Elaine Murphy; Claudio Graziano; Marco Seri; Alberto Burlina; Geppo Sartori; Eva Trevisson; Leonardo Salviati

We studied eight kindreds with gyrate atrophy of choroid and retina (GA), a rare autosomal recessive disorder caused by mutations of the OAT gene, encoding the homoexameric enzyme ornithine‐delta‐aminotransferase. We identified four novel and five previously reported mutations. Missense alleles were expressed in yeast strain carrying a deletion of the orthologous of human OAT. All mutations markedly reduced enzymatic activity. However, the effect on the yeast growth was variable, suggesting that some mutations retain residual activity, below the threshold of the enzymatic assay. Mutant proteins were either highly unstable and rapidly degraded, or failed to assemble to form the active OAT hexamer. Where possible, fibroblast analysis confirmed these data. We found no correlation between the residual enzymatic activity and the age of onset, or the severity of symptoms. Moreover, the response to B6 was apparently not related to the specific mutations carried by patients. Overall these data suggest that other factors besides the specific OAT genotype modulate (GA) phenotype in patients. Finally, we found that 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR), an AMPK activator known to increase mitochondrial biogenesis, markedly stimulates OAT expression, thus representing a possible treatment for a subset of GA patients with hypomorphic alleles.


Human Molecular Genetics | 2017

Increased mitophagy in the skeletal muscle of spinal and bulbar muscular atrophy patients

Doriana Borgia; Adriana Malena; Marco Spinazzi; Maria Andrea Desbats; Leonardo Salviati; Aaron P. Russell; Giovanni Miotto; Laura Tosatto; Elena Pegoraro; Gianni Sorarù; Maria Pennuto; Lodovica Vergani

Abstract Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disorder caused by polyglutamine expansion in the androgen receptor (AR) and characterized by the loss of lower motor neurons. Here we investigated pathological processes occurring in muscle biopsy specimens derived from SBMA patients and, as controls, age-matched healthy subjects and patients suffering from amyotrophic lateral sclerosis (ALS) and neurogenic atrophy. We detected atrophic fibers in the muscle of SBMA, ALS and neurogenic atrophy patients. In addition, SBMA muscle was characterized by the presence of a large number of hypertrophic fibers, with oxidative fibers having a larger size compared with glycolytic fibers. Polyglutamine-expanded AR expression was decreased in whole muscle, yet enriched in the nucleus, and localized to mitochondria. Ultrastructural analysis revealed myofibrillar disorganization and streaming in zones lacking mitochondria and degenerating mitochondria. Using molecular (mtDNA copy number), biochemical (citrate synthase and respiratory chain enzymes) and morphological (dark blue area in nicotinamide adenine dinucleotide-stained muscle cross-sections) analyses, we found a depletion of the mitochondria associated with enhanced mitophagy. Mass spectrometry analysis revealed an increase of phosphatidylethanolamines and phosphatidylserines in mitochondria isolated from SBMA muscles, as well as a 50% depletion of cardiolipin associated with decreased expression of the cardiolipin synthase gene. These observations suggest a causative link between nuclear polyglutamine-expanded AR accumulation, depletion of mitochondrial mass, increased mitophagy and altered mitochondrial membrane composition in SBMA muscle patients. Given the central role of mitochondria in cell bioenergetics, therapeutic approaches toward improving the mitochondrial network are worth considering to support SBMA patients.


Human Mutation | 2018

Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function

Luis Vazquez Fonseca; Mara Doimo; Cristina Calderan; Maria Andrea Desbats; Manuel Jesús Acosta; Cristina Cerqua; Matteo Cassina; Shazia Ashraf; Friedhelm Hildebrandt; Geppo Sartori; Plácido Navas; Eva Trevisson; Leonardo Salviati

Mutations in COQ8B cause steroid‐resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype–phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits.

Collaboration


Dive into the Maria Andrea Desbats's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Plácido Navas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge