Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonardus M. I. Koharudin is active.

Publication


Featured researches published by Leonardus M. I. Koharudin.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cyclopentenone prostaglandin-induced unfolding and aggregation of the Parkinson disease-associated UCH-L1

Leonardus M. I. Koharudin; Hao Liu; Roberto Di Maio; Ravindra Kodali; Steven H. Graham; Angela M. Gronenborn

Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) has been implicated in Parkinson’s disease (PD) and is present in neurofibrillary tangles or Lewy bodies. However, the molecular basis for UCH-L1s involvement in proteinacious fibril formation is still elusive, especially in regard to the pathogenicity of the I93M mutation. Here we show that modification of UCH-L1 by cyclopentenone prostaglandins causes unfolding and aggregation. A single thiol group on Cys152 reacts with the α,β-unsaturated carbonyl center in the cyclopentenone ring of prostaglandins, resulting in a covalent adduct. We also show that the PD-associated I93M mutant of UCH-L1 is well-folded, structurally similar to the wild-type protein, and aggregates upon conjugation by cyclopentenone prostaglandins. Our findings suggest a possible mechanistic link between UCH-L1 modification by cyclopentenone prostaglandins and the etiology of neurodegeneration.


Biochemistry | 2012

Kinetically competing huntingtin aggregation pathways control amyloid polymorphism and properties

Murali Jayaraman; Rakesh Mishra; Ravindra Kodali; Ashwani K. Thakur; Leonardus M. I. Koharudin; Angela M. Gronenborn; Ronald Wetzel

In polyglutamine (polyQ) containing fragments of the Huntingtons disease protein huntingtin (htt), the N-terminal 17 amino acid htt(NT) segment serves as the core of α-helical oligomers whose reversible assembly locally concentrates the polyQ segments, thereby facilitating polyQ amyloid nucleation. A variety of aggregation inhibitors have been described that achieve their effects by neutralizing this concentrating function of the htt(NT) segment. In this paper we characterize the nature and limits of this inhibition for three means of suppressing htt(NT)-mediated aggregation. We show that the previously described action of htt(NT) peptide-based inhibitors is solely due to their ability to suppress the htt(NT)-mediated aggregation pathway. That is, under htt(NT) inhibition, nucleation of polyQ amyloid formation by a previously described alternative nucleation mechanism proceeds unabated and transiently dominates the aggregation process. Removal of the bulk of the htt(NT) segment by proteolysis or mutagenesis also blocks the htt(NT)-mediated pathway, allowing the alternative nucleation pathway to dominate. In contrast, the previously described immunoglobulin-based inhibitor, the antihtt(NT) V(L) 12.3 protein, effectively blocks both amyloid pathways, leading to stable accumulation of nonamyloid oligomers. These data show that the htt(NT)-dependent and -independent pathways of amyloid nucleation in polyQ-containing htt fragments are in direct kinetic competition. The results illustrate how amyloid polymorphism depends on assembly mechanism and kinetics and have implications for how the intracellular environment can influence aggregation pathways.


Structure | 2011

Structure-function analysis of a CVNH-LysM lectin expressed during plant infection by the rice blast fungus Magnaporthe oryzae

Leonardus M. I. Koharudin; Arturo Roberto Viscomi; Barbara Montanini; Michael J. Kershaw; Nicholas J. Talbot; Simone Ottonello; Angela M. Gronenborn

The rice blast fungus Magnaporthe oryzaes genome encodes a hypothetical protein (MGG_03307) containing a type III CVNH lectin, in which a LysM domain is inserted between individual repeats of a single CVNH domain. At present, no structural or ligand binding data are available for any type III CVNH and functional studies in natural source organisms are scarce. Here, we report NMR solution structure and functional data on MGG_03307. The structure of the CVNH/LysM module revealed that intact and functionally competent CVNH and LysM domains are present. Using NMR titrations, carbohydrate specificities for both domains were determined, and it was found that each domain behaves as an isolated unit without any interdomain communication. Furthermore, live-cell imaging revealed a predominant localization of MGG_03307 within the appressorium, the specialized fungal cell for gaining entry into rice tissue. Our results suggest that MGG_03307 plays a role in the early stages of plant infection.


Journal of Biological Chemistry | 2011

Novel fold and carbohydrate specificity of the potent anti-HIV cyanobacterial lectin from oscillatoria agardhii

Leonardus M. I. Koharudin; William Furey; Angela M. Gronenborn

Oscillatoria agardhii agglutinin (OAA) is a recently discovered cyanobacterial lectin that exhibits potent anti-HIV activity. Up to now, only its primary structure and carbohydrate binding data have been available. To elucidate the structural basis for the antiviral mechanism of OAA, we determined the structure of this lectin by x-ray crystallography at 1.2 Å resolution and mapped the specific carbohydrate recognition sites of OAA by NMR spectroscopy. The overall architecture of OAA comprises 10 β-strands that fold into a single, compact, β-barrel-like domain, creating a unique topology compared with all known protein structures in the Protein Data Bank. OAA sugar binding was tested against Man-9 and various disaccharide components of Man-9. Two symmetric carbohydrate-binding sites were located on the protein, and a preference for Manα(1–6)Man-linked sugars was found. Altogether, our structural results explain the antiviral activity OAA and add to the growing body of knowledge about antiviral lectins.


Journal of Biological Chemistry | 2009

The phox domain of sorting nexin 5 lacks phosphatidylinositol 3-phosphate (PtdIns(3)P) specificity and preferentially binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2).

Leonardus M. I. Koharudin; William Furey; Hao Liu; Yong-Jian Liu; Angela M. Gronenborn

Subcellular retrograde transport of cargo receptors from endosomes to the trans-Golgi network is critically involved in a broad range of physiological and pathological processes and highly regulated by a genetically conserved heteropentameric complex, termed retromer. Among the retromer components identified in mammals, sorting nexin 5 and 1 (SNX5; SNX1) have recently been found to interact, possibly controlling the membrane binding specificity of the complex. To elucidate how the unique sequence features of the SNX5 phox domain (SNX5-PX) influence retrograde transport, we have determined the SNX5-PX structure by NMR and x-ray crystallography at 1.5 Å resolution. Although the core fold of SNX5-PX resembles that of other known PX domains, we found novel structural features exclusive to SNX5-PX. It is most noteworthy that in SNX5-PX, a long helical hairpin is added to the core formed by a new α2′-helix and a much longer α3-helix. This results in a significantly altered overall shape of the protein. In addition, the unique double PXXP motif is tightly packed against the rest of the protein, rendering this part of the structure compact, occluding parts of the putative phosphatidylinositol (PtdIns) binding pocket. The PtdIns binding and specificity of SNX5-PX was evaluated by NMR titrations with eight different PtdIns and revealed that SNX5-PX preferentially and specifically binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). The distinct structural and PtdIns binding characteristics of SNX5-PX impart specific properties on SNX5, influencing retromer-mediated regulation of retrograde trafficking of transmembrane cargo receptors.


Journal of Biological Chemistry | 2014

Structural Basis of Allosteric Activation of Sterile α Motif and Histidine-Aspartate Domain-containing Protein 1 (SAMHD1) by Nucleoside Triphosphates

Leonardus M. I. Koharudin; Ying Wu; Maria DeLucia; Jennifer Mehrens; Angela M. Gronenborn; Jinwoo Ahn

Background: SAMHD1 is a deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase. Results: SAMHD1 forms a catalytically active tetramer upon binding of two nucleoside triphosphates with different specificities at two adjacent allosteric sites. Conclusion: The primary allosteric site selectively binds guanine-containing nucleotides, whereas the secondary site accommodates any dNTP. Significance: The tetramerization and catalytic activity of SAMHD1 is differentially regulated by different nucleoside triphosphates. Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) plays a critical role in inhibiting HIV infection, curtailing the pool of dNTPs available for reverse transcription of the viral genome. Recent structural data suggested a compelling mechanism for the regulation of SAMHD1 enzymatic activity and revealed dGTP-induced association of two inactive dimers into an active tetrameric enzyme. Here, we present the crystal structures of SAMHD1 catalytic core (residues 113–626) tetramers, complexed with mixtures of nucleotides, including dGTP/dATP, dGTP/dCTP, dGTP/dTTP, and dGTP/dUTP. The combined structural and biochemical data provide insight into dNTP promiscuity at the secondary allosteric site and how enzymatic activity is modulated. In addition, we present biochemical analyses of GTP-induced SAMHD1 full-length tetramerization and the structure of SAMHD1 catalytic core tetramer in complex with GTP/dATP, revealing the structural basis of GTP-mediated SAMHD1 activation. Altogether, the data presented here advance our understanding of SAMHD1 function during cellular homeostasis.


Journal of Biological Chemistry | 2013

The Human W42R γD-Crystallin Mutant Structure Provides a Link between Congenital and Age-related Cataracts

Fangling Ji; Jinwon Jung; Leonardus M. I. Koharudin; Angela M. Gronenborn

Background: The mechanism of cataract formation by the recently discovered γD-crystallin W42R mutant is unknown. Results: Structural, biochemical, and biophysical studies revealed a partially unfolded species of the W42R mutant. Conclusion: Partially unfolded species serve as nuclei for aggregation. Significance: The properties of the W42R mutant γD-crystallin provide the link to the pathogenesis of age-related cataract caused by photodamaged wild-type γD-crystallin. Some mutants of human γD-crystallin are closely linked to congenital cataracts, although the detailed molecular mechanisms of mutant-associated cataract formation are generally not known. Here we report on a recently discovered γD-crystallin mutant (W42R) that has been linked to autosomal dominant, congenital cataracts in a Chinese family. The mutant protein is much less soluble and stable than wild-type γD-crystallin. We solved the crystal structure of W42R at 1.7 Å resolution, which revealed only minor differences from the wild-type structure. Interestingly, the W42R variant is highly susceptible to protease digestion, suggesting the presence of a small population of partially unfolded protein. This partially unfolded species was confirmed and quantified by NMR spectroscopy. Hydrogen/deuterium exchange experiments revealed chemical exchange between the folded and unfolded species. Exposure of wild-type γD-crystallin to UV caused damage to the N-terminal domain of the protein, resulting in very similar proteolytic susceptibility as observed for the W42R mutant. Altogether, our combined data allowed us to propose a model for W42R pathogenesis, with the W42R mutant serving as a mimic for photodamaged γD-crystallin involved in age-related cataract.


Structure | 2011

Structural basis of the anti-HIV activity of the cyanobacterial Oscillatoria Agardhii agglutinin.

Leonardus M. I. Koharudin; Angela M. Gronenborn

The cyanobacterial Oscillatory Agardhii agglutinin (OAA) is a recently discovered HIV-inactivating lectin that interacts with high-mannose sugars. Nuclear magnetic resonance (NMR) binding studies between OAA and α3,α6-mannopentaose (Manα(1-3)[Manα(1-3)[Manα(1-6)]Manα(1-6)]Man), the branched core unit of Man-9, revealed two binding sites at opposite ends of the protein, exhibiting essentially identical affinities. Atomic details of the specific protein-sugar contacts in the recognition loops of OAA were delineated in the high-resolution crystal structures of free and glycan-complexed protein. No major changes in the overall protein structure are induced by carbohydrate binding, with essentially identical apo- and sugar-bound conformations in binding site 1. A single peptide bond flip at W77-G78 is seen in binding site 2. Our combined NMR and crystallographic results provide structural insights into the mechanism by which OAA specifically recognizes the branched Man-9 core, distinctly different from the recognition of the D1 and D3 arms at the nonreducing end of high-mannose carbohydrates by other antiviral lectins.


Current Opinion in Virology | 2014

Antiviral lectins as potential HIV microbicides

Leonardus M. I. Koharudin; Angela M. Gronenborn

A growing class of potential antivirals encompasses carbohydrate-binding proteins, such as antibodies and lectins. They block virus entry into host target cells and halt virus transmission from virus-infected cells to non-infected cells, thereby preventing infection. Here, we review the structural basis for the anti-HIV activity of various lectins, describing their structures and determinants of high-affinity oligosaccharide binding. The mechanism of glycan recognition on the gp120 envelope protein by these antiviral lectins may therefore be exploited for developing agents and alternative strategies to prevent HIV transmission.


Journal of Biological Chemistry | 2012

Structural Insights into the Anti-HIV Activity of the Oscillatoria agardhii Agglutinin Homolog Lectin Family

Leonardus M. I. Koharudin; Sireesha Kollipara; Christopher Aiken; Angela M. Gronenborn

Background: The Oscillatoria agardhii agglutinin homolog (OAAH) proteins constitute a novel lectin family. Results: Three-dimensional structures, carbohydrate binding specificities, and antiviral activity data for several members were determined. Conclusion: All members display potent anti-HIV activity. Significance: Our results uncovered the structural basis of protein-carbohydrate recognition in this novel lectin family and provide insights into the molecular basis of their HIV inactivation properties. Oscillatoria agardhii agglutinin homolog (OAAH) proteins belong to a recently discovered lectin family. All members contain a sequence repeat of ∼66 amino acids, with the number of repeats varying among different family members. Apart from data for the founding member OAA, neither three-dimensional structures, information about carbohydrate binding specificities, nor antiviral activity data have been available up to now for any other members of the OAAH family. To elucidate the structural basis for the antiviral mechanism of OAAHs, we determined the crystal structures of Pseudomonas fluorescens and Myxococcus xanthus lectins. Both proteins exhibit the same fold, resembling the founding family member, OAA, with minor differences in loop conformations. Carbohydrate binding studies by NMR and x-ray structures of glycan-lectin complexes reveal that the number of sugar binding sites corresponds to the number of sequence repeats in each protein. As for OAA, tight and specific binding to α3,α6-mannopentaose was observed. All the OAAH proteins described here exhibit potent anti-HIV activity at comparable levels. Altogether, our results provide structural details of the protein-carbohydrate interaction for this novel lectin family and insights into the molecular basis of their HIV inactivation properties.

Collaboration


Dive into the Leonardus M. I. Koharudin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lin Liu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinwon Jung

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jinwoo Ahn

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Maria DeLucia

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

William Furey

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge