Leonidas Pérez-Estrada
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Leonidas Pérez-Estrada.
Science of The Total Environment | 2011
Mohamed Gamal El-Din; Hongjing Fu; Nan Wang; Pamela Chelme-Ayala; Leonidas Pérez-Estrada; Przemysław Drzewicz; Jonathan W. Martin; Warren Zubot; Daniel W. Smith
The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required. This study examined, for the first time, the impacts of pretreatment steps, including filtration and petroleum-coke adsorption, on ozonation requirements and performance. The effect of the initial OSPW pH on treatment performance, and the evolution of ozonation and its impact on OSPW toxicity and biodegradability were also examined. The degradation of more than 76% of total acid-extractable organics was achieved using a semi-batch ozonation system at a utilized ozone dose of 150 mg/L. With a utilized ozone dose of 100 mg/L, the treated OSPW became more biodegradable and showed no toxicity towards Vibrio fischeri. Changes in the NA profiles in terms of carbon number and number of rings were observed after ozonation. The filtration of the OSPW did not improve the ozonation performance. Petroleum-coke adsorption was found to be effective in reducing total acid-extractable organics by a 91%, NA content by an 84%, and OSPW toxicity from 4.3 to 1.1 toxicity units. The results of this study indicate that the combination of petroleum-coke adsorption and ozonation is a promising treatment approach to treat OSPW.
Environmental Science & Technology | 2013
Nan Wang; Pamela Chelme-Ayala; Leonidas Pérez-Estrada; Erick Garcia-Garcia; Jonathan Pun; Jonathan W. Martin; Miodrag Belosevic; Mohamed Gamal El-Din
Oil sands process-affected water (OSPW) is the water contained in tailings impoundment structures in oil sands operations. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. In this study, ozonation followed by biodegradation was used to remediate OSPW. The impacts of the ozone process evolution on the naphthenic acids (NAs) speciation and acute toxicity were evaluated. Ion-mobility spectrometry (IMS) was used to preliminarily separate isomeric and homologous species. The results showed limited effects of the ozone reactor size on the treatment performance in terms of contaminant removal. In terms of NAs speciation, high reactivity of NAs with higher number of carbons and rings was only observed in a region of high reactivity (i.e., utilized ozone dose lower than 50 mg/L). It was also found that nearly 0.5 mg/L total NAs was oxidized per mg/L of utilized ozone dose, at utilized ozone doses lower than 50 mg/L. IMS showed that ozonation was able to degrade NAs, oxidized NAs, and sulfur/nitrogenated NAs. Complete removal of toxicity toward Vibrio fischeri was achieved after ozonation followed by 28-day biodegradation period. In vitro and in vivo assays indicated that ozonation reduced the OSPW toxicity to mice.
Environmental Science & Technology | 2012
Przemysław Drzewicz; Leonidas Pérez-Estrada; Alla Alpatova; Jonathan W. Martin; Mohamed Gamal El-Din
Large volumes of oil sands process-affected water (OSPW) are produced during the extraction of bitumen from oil sands in Alberta, Canada. The degradation of a model naphthenic acid, cyclohexanoic acid (CHA), and real naphthenic acids (NAs) from OSPW were investigated in the presence of peroxydisulfate (S(2)O(8)(2-)) and zerovalent iron (ZVI). For the model compound CHA (50 mg/L), in the presence of ZVI and 500 mg/L S(2)O(8)(2-), the concentration decreased by 45% after 6 days of treatment at 20 °C, whereas at 40, 60, and 80 °C the concentration decreased by 20, 45 and 90%, respectively, after 2 h of treatment. The formation of chloro-CHA was observed during ZVI/S(2)O(8)(2-) treatment of CHA in the presence of chloride. For OSPW NAs, in the presence of ZVI alone, a 50% removal of NAs was observed after 6 days of exposure at 20 °C. The addition of 100 mg/L S(2)O(8)(2-) to the solution increased the removal of OSPW NAs from 50 to 90%. In absence of ZVI, a complete NAs removal from OSPW was observed in presence of 2000 mg/L S(2)O(8)(2-) at 80 °C. The addition of ZVI increased the efficiency of NAs oxidation by S(2)O(8)(2-) near room temperature. Thus, ZVI/S(2)O(8)(2-) process was found to be a viable option for accelerating the degradation of NAs present in OSPW.
Water Research | 2011
Erick Garcia-Garcia; Jun Qing Ge; Ayoola Oladiran; Benjamin C.S. Montgomery; Mohamed Gamal El-Din; Leonidas Pérez-Estrada; James L. Stafford; Jonathan W. Martin; Miodrag Belosevic
We evaluated whether ozonation ameliorated the effects of the organic fraction of oil sands process water (OSPW) on immune functions of mice. Ozonation of OSPW eliminated the capacity of its organic fraction to affect various mouse bone marrow-derived macrophage (BMDM) functions in vitro. These included the production of nitric oxide and the expression of inducible nitric oxide synthase, the production of reactive oxygen intermediates and the expression of NADPH oxidase subunits, phagocytosis, and the expression of pro-inflammatory cytokine genes. Ozone treatment also eliminated the ability of OSPW organic fraction to down-regulate the expression of various pro-inflammatory cytokine and chemokine genes in the liver of mice, one week after oral exposure. We conclude that ozone treatment may be a valuable process for the remediation of large volumes of OSPW.
Environmental Science & Technology | 2014
Nian Sun; Pamela Chelme-Ayala; Nikolaus Klamerth; Kerry N. McPhedran; Md. Shahinoor Islam; Leonidas Pérez-Estrada; Przemysław Drzewicz; Brian J. Blunt; Megan Reichert; Mariel O. Hagen; Keith B. Tierney; Miodrag Belosevic; Mohamed Gamal El-Din
Oil sands process-affected water (OSPW) is a toxic and poorly biodegradable mixture of sand, silt, heavy metals, and organics. In this study, qualitative and quantitative comparisons of naphthenic acids (NAs) were done using ultraperformance liquid chromatography time-of-flight mass spectrometry (UPLC TOF-MS), Fourier transform ion cyclotron resonance (FT-ICR) MS, and ion mobility spectrometry (IMS). The unique combination of these analyses allowed for the determination and correlation of NAs, oxidized NAs, and heteroatom (sulfur or nitrogen) NAs. Despite its lower resolution, UPLC-TOF MS was shown to offer a comparable level of reliability and precision as the high resolution FT-ICR MS. Additionally, the impacts of ozonation (35 mg/L utilized ozone dose) and subsequent NAs degradation on OSPW toxicity were assessed via a collection of organisms and toxicity end points using Vibrio fischeri (nonspecific), specific fish macrophage antimicrobial responses, and fish olfactory responses. Fish macrophages exposed to ozonated OSPW for 1 week showed higher production of reactive oxygen and nitrogen intermediates; however, after 12 weeks the responses were reduced significantly. Fish olfactory tests suggested that OSPW interfered with their perception of odorants. Current results indicate that the quantification of NAs species, using novel analytical methods, can be combined with various toxicity methods to assess the efficiency of OSPW treatment processes.
Research on Chemical Intermediates | 2007
I. Oller; Pilar Fernández-Ibáñez; Manuel I. Maldonado; Leonidas Pérez-Estrada; Wolfgang Gernjak; Cesar Pulgarin; Paula Passarinho; Sixto Malato
In this paper, we present pilot-scale solar Photo-Fenton and TiO2 treatment of a model compound (α-methylphenylglycine) dissolved in 500 mg/l concentration in water. Not only contaminant disappearance and mineralisation were evaluated, but also enhancement of biodegradability. The solar photoreactors, composed of 4.16 m2 of compound parabolic collectors, had a total volume of 82 l (44.6 l illuminated). Treatment was successful with both Advanced Oxidation Processes (AOPs) tested, but photo-Fenton was shown to be by far more efficient from the kinetic and practical point of view. To find out the conditions for biocompatibility using the AOPs as a pre-treatment, waste water after certain degradation time, unacclimated municipal sludge and mineral nutrients were placed together and evaluated by the Zahn-Wellens (Z-W) test. Biodegradability was enhanced (70% biodegradable) by both AOPs, but photo-Fenton was demonstrated to be more efficient, requiring a treatmen time one order of magnitude shorter than TiO2. Hydrogen peroxide management for reduced consumption and elimination prior to discharging water to the biotreatment step is also discussed in detail.
Chemosphere | 2013
Lisa D. Brown; Leonidas Pérez-Estrada; Nan Wang; Mohamed Gamal El-Din; Jonathan W. Martin; Phillip M. Fedorak; Ania C. Ulrich
The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option.
Science of The Total Environment | 2015
Yuan Chen; Kerry N. McPhedran; Leonidas Pérez-Estrada; Mohamed Gamal El-Din
Oil sands process-affected water (OSPW) is a major environmental issue due to its acute and chronic toxicity to aquatic life. Advanced oxidation processes are promising treatments to successfully degrade toxic OSPW compounds. This study applied high resolution mass spectrometry to detect over 1000 compounds in OSPW samples after treatments including general ozonation, and ozone with carbonate, tert-butyl-alcohol, carbonate/tert-butyl-alcohol, tetranitromethane, or iron. Hierarchal clustering analysis showed that samples clustered based on sampling time and principal component analysis corroborated these results while also providing information on significant markers responsible for the clustering. Some markers were uniquely present in certain treatment conditions, while others showed variable behaviors in two or more treatments due to the presence of scavengers/catalysts. This advanced approach to monitoring significant changes of markers by using multivariate analysis can be invaluable for future work on OSPW treatment by-products and their potential toxicity to receiving environment organisms.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2013
Weibing Lu; Andrea Ewanchuk; Leonidas Pérez-Estrada; D.C. Sego; Ania C. Ulrich
Fluorescence spectrophotometry has been proposed as a quick screening technique for the measurement of naphthenic acids (NAs). To evaluate the feasibility of this application, the fluorescence emission spectra of NAs extracted from three oil sands process water sources were compared with that of commercial NAs. The NAs resulting from the bitumen extraction process cannot be differentiated because of the similarity of the fluorescence spectra. Separation of the fluorescent species in NAs using high performance liquid chromatography with fluorescence detector proved unsuccessful. The acidic fraction of NAs is fluorescent but the basic fraction of NAs is not fluorescent, implying that aromatic acids in NAs give rise to the fluorescent signals. The concentrations of NAs in oil sands process water were measured by Fourier transform infrared spectroscopy (FTIR), fluorescence spectrophotometry and ultra high performance liquid chromatography-time of flight/mass spectrometry (UPLC-TOF/MS). Commercial Merichem and Kodak NAs are the best standards to use when measuring NAs concentration with FTIR and fluorescence spectrophotometry. In addition, the NAs concentrations measured by fluorescence spectrophotometry are about 30 times higher than those measured by FTIR and UPLC-TOF/MS. The findings in this study underscore the limitation of fluorescence spectrophotometry in the measurement of NAs.
Water Research | 2006
Milena Lapertot; Cesar Pulgarin; Pilar Fernández-Ibáñez; Manuel I. Maldonado; Leonidas Pérez-Estrada; I. Oller; Wolfgang Gernjak; Sixto Malato