Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Przemysław Drzewicz is active.

Publication


Featured researches published by Przemysław Drzewicz.


Science of The Total Environment | 2011

Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water

Mohamed Gamal El-Din; Hongjing Fu; Nan Wang; Pamela Chelme-Ayala; Leonidas Pérez-Estrada; Przemysław Drzewicz; Jonathan W. Martin; Warren Zubot; Daniel W. Smith

The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required. This study examined, for the first time, the impacts of pretreatment steps, including filtration and petroleum-coke adsorption, on ozonation requirements and performance. The effect of the initial OSPW pH on treatment performance, and the evolution of ozonation and its impact on OSPW toxicity and biodegradability were also examined. The degradation of more than 76% of total acid-extractable organics was achieved using a semi-batch ozonation system at a utilized ozone dose of 150 mg/L. With a utilized ozone dose of 100 mg/L, the treated OSPW became more biodegradable and showed no toxicity towards Vibrio fischeri. Changes in the NA profiles in terms of carbon number and number of rings were observed after ozonation. The filtration of the OSPW did not improve the ozonation performance. Petroleum-coke adsorption was found to be effective in reducing total acid-extractable organics by a 91%, NA content by an 84%, and OSPW toxicity from 4.3 to 1.1 toxicity units. The results of this study indicate that the combination of petroleum-coke adsorption and ozonation is a promising treatment approach to treat OSPW.


Environmental Science & Technology | 2011

The Impact of Metallic Coagulants on the Removal of Organic Compounds from Oil Sands Process-Affected Water

Parastoo Pourrezaei; Przemysław Drzewicz; Yingnan Wang; Mohamed Gamal El-Din; Leonidas A. Perez-Estrada; Jonathan W. Martin; Julie Anderson; Steve Wiseman; Karsten Liber; John P. Giesy

Coagulation/flocculation (CF) by use of alum and cationic polymer polyDADMAC, was performed as a pretreatment for remediation of oil sands process-affected water (OSPW). Various factors were investigated and the process was optimized to improve efficiency of removal of organic carbon and turbidity. Destabilization of the particles occurred through charge neutralization by adsorption of hydroxide precipitates. Scanning electron microscope images revealed that the resultant flocs were compact. The CF process significantly reduced concentrations of naphthenic acids (NAs) and oxidized NAs by 37 and 86%, respectively, demonstrating the applicability of CF pretreatment to remove a persistent and toxic organic fraction from OSPW. Concentrations of vanadium and barium were decreased by 67-78% and 42-63%, respectively. Analysis of surface functional groups on flocs also confirmed the removal of the NAs compounds. Flocculation with cationic polymer compared to alum, caused toxicity toward the benthic invertebrate, Chironoums dilutus, thus application of the polymer should be limited.


Environmental Science & Technology | 2011

Structure-reactivity of naphthenic acids in the ozonation process.

Leonidas A. Perez-Estrada; Xiumei Han; Przemysław Drzewicz; Mohamed Gamal El-Din; Phillip M. Fedorak; Jonathan W. Martin

Large volumes of oil sands process-affected water (OSPW) are produced in northern Alberta by the surface mining oil sands industry. Naphthenic acids (NAs) are a complex mixture of persistent organic acids that are believed to contribute to the toxicity of OSPW. In situ microbial biodegradation strategies are slow and not effective at eliminating chronic aquatic toxicity, thus there is a need to examine alternative remediation techniques. NAs with multiple rings and alkyl branching are most recalcitrant to microbial biodegradation, but here we hypothesized that these same structural features may lead to preferential degradation in the ozonation process. Total NA degradation increased with increasing pH for commercial NA solutions, suggesting a hydroxyl radical mechanism and that naturally alkaline OSPW would unlikely require pH adjustment prior to treatment. For commercial NAs and OSPW, NAs with more rings and more carbon (and more H atoms) were depleted most rapidly in the process. Relative rate measurements with binary mixtures of model NA compounds not only confirmed this structure reactivity but also indicated that alkyl branching patterns were an additional factor determining NA reactivity. The results demonstrate that ozonation is complementary to microbial biodegradation, and the process remains a promising water reclamation strategy for the oil sands industry.


Environmental Science & Technology | 2012

Impact of Peroxydisulfate in the Presence of Zero Valent Iron on the Oxidation of Cyclohexanoic Acid and Naphthenic Acids from Oil Sands Process-Affected Water

Przemysław Drzewicz; Leonidas Pérez-Estrada; Alla Alpatova; Jonathan W. Martin; Mohamed Gamal El-Din

Large volumes of oil sands process-affected water (OSPW) are produced during the extraction of bitumen from oil sands in Alberta, Canada. The degradation of a model naphthenic acid, cyclohexanoic acid (CHA), and real naphthenic acids (NAs) from OSPW were investigated in the presence of peroxydisulfate (S(2)O(8)(2-)) and zerovalent iron (ZVI). For the model compound CHA (50 mg/L), in the presence of ZVI and 500 mg/L S(2)O(8)(2-), the concentration decreased by 45% after 6 days of treatment at 20 °C, whereas at 40, 60, and 80 °C the concentration decreased by 20, 45 and 90%, respectively, after 2 h of treatment. The formation of chloro-CHA was observed during ZVI/S(2)O(8)(2-) treatment of CHA in the presence of chloride. For OSPW NAs, in the presence of ZVI alone, a 50% removal of NAs was observed after 6 days of exposure at 20 °C. The addition of 100 mg/L S(2)O(8)(2-) to the solution increased the removal of OSPW NAs from 50 to 90%. In absence of ZVI, a complete NAs removal from OSPW was observed in presence of 2000 mg/L S(2)O(8)(2-) at 80 °C. The addition of ZVI increased the efficiency of NAs oxidation by S(2)O(8)(2-) near room temperature. Thus, ZVI/S(2)O(8)(2-) process was found to be a viable option for accelerating the degradation of NAs present in OSPW.


Environmental Science & Technology | 2012

Effect of Molecular Structure on the Relative Reactivity of Naphthenic Acids in the UV/H2O2 Advanced Oxidation Process

Atefeh Afzal; Przemysław Drzewicz; Leonidas A. Perez-Estrada; Yuan Chen; Jonathan W. Martin; Mohamed Gamal El-Din

The large volume of oil sands process-affected water (OSPW) produced by the oil sands industry in Northern Alberta, Canada, is an environmental concern. The toxicity of OSPW has been attributed to a complex mixture of naturally occurring acids, including naphthenic acids (NAs). Highly cyclic or branched NAs are highly biopersistent in tailings ponds, thus understanding structure-reactivity relationship for NAs is very important for OSPW reclamation. In this study, we hypothesized that large, branched and cyclic NAs may be better oxidized in the UV/H(2)O(2) process than small, linear and acyclic NAs. Relative rate measurements using binary mixtures of model NA compounds confirmed that reactivity favored compounds with more carbons, and also favored NAs with one saturated ring, relative to the corresponding linear NA. However, for model compound with three rings, no increased reactivity was observed relative to monocyclic NA. UV/H(2)O(2) treatment of OSPW confirmed our findings with model compounds, indicating that the compounds with more carbons are favored for degradation. However, increasing the number of rings (or double bond equivalents) in OSPW NAs did not show any clear structure-reactivity. Microbial degradation studies of the UV/H(2)O(2) treated OSPW should be conducted to examine the overall benefit of this treatment for the real applications.


Journal of Physical Chemistry A | 2010

Degradation of a model naphthenic acid, cyclohexanoic acid, by vacuum UV (172 nm) and UV (254 nm)/H2O2.

Przemysław Drzewicz; Atefeh Afzal; Mohamed Gamal El-Din; Jonathan W. Martin

The mechanism of hydroxyl radical initiated degradation of a typical oil sands process water (OSPW) alicyclic carboxylic acid was studied using cyclohexanoic acid (CHA) as a model compound. By use of vacuum ultraviolet irradiation (VUV, 172 nm) and ultraviolet irradiation in the presence of hydrogen peroxide UV(254 nm)/H(2)O(2), it was established that CHA undergoes degradation through a peroxyl radical. In both processes the decay of the peroxyl radical leads predominantly to the formation of 4-oxo-CHA, and minor amounts of hydroxy-CHA (detected only in UV/H(2)O(2)). In UV/H(2)O(2), additional 4-oxo-CHA may also have been formed by direct reaction of the oxyl radical with H(2)O(2). The oxyl radical can be formed during decay of the peroxyl-CHA radical or reaction of hydroxy-CHA with hydroxyl radical. Oxo- and hydroxy-CHA further degraded to various dihydroxy-CHAs. Scission of the cyclohexane ring was also observed, on the basis of the observation of acyclic byproducts including heptadioic acid and various short-chain carboxylic acids. Overall, the hydroxyl radical induced degradation of CHA proceeded through several steps, involving more than one hydroxyl radical reaction, thus efficiency of the UV/H(2)O(2) reaction will depend on the rate of generation of hydroxyl radical throughout the process. In real applications to OSPW, concentrations of H(2)O(2) will need to be carefully optimized and the environmental fate and effects of the various degradation products of naphthenic acids considered.


Science of The Total Environment | 2012

Decomposition of cyclohexanoic acid by the UV/H2O2 process under various conditions.

Atefeh Afzal; Przemysław Drzewicz; Jonathan W. Martin; Mohamed Gamal El-Din

Naphthenic acids (NAs) are a broad range of alicyclic and aliphatic compounds that are persistent and contribute to the toxicity of oil sands process affected water (OSPW). In this investigation, cyclohexanoic acid (CHA) was selected as a model naphthenic acid, and its oxidation was investigated using advanced oxidation employing a low-pressure ultraviolet light in the presence of hydrogen peroxide (UV/H(2)O(2) process). The effects of two pHs and common OSPW constituents, such as chloride (Cl(-)) and carbonate (CO(3)(2-)) were investigated in ultrapure water. The optimal molar ratio of H(2)O(2) to CHA in the treatment process was also investigated. The pH had no significant effect on the degradation, nor on the formation and degradation of byproducts in ultrapure water. The presence of CO(3)(2-) or Cl(-) significantly decreased the CHA degradation rate. The presence of 700 mg/L CO(3)(2-) or 500 mg/L Cl(-), typical concentrations in OSPW, caused a 55% and 23% decrease in the pseudo-first order degradation rate constants for CHA, respectively. However, no change in byproducts or in the degradation trend of byproducts, in the presence of scavengers was observed. A real OSPW matrix also had a significant impact by decreasing the CHA degradation rate, such that by spiking CHA into the OSPW, the degradation rate decreased up to 82% relative to that in ultrapure water. The results of this study show that UV/H(2)O(2) AOP is capable of degrading CHA as a model NA in ultrapure water. However, in the real applications, the effect of radical scavengers should be taken into consideration for the achievement of best performance of the process.


Environmental Science & Technology | 2014

Advanced Analytical Mass Spectrometric Techniques and Bioassays to Characterize Untreated and Ozonated Oil Sands Process-Affected Water

Nian Sun; Pamela Chelme-Ayala; Nikolaus Klamerth; Kerry N. McPhedran; Md. Shahinoor Islam; Leonidas Pérez-Estrada; Przemysław Drzewicz; Brian J. Blunt; Megan Reichert; Mariel O. Hagen; Keith B. Tierney; Miodrag Belosevic; Mohamed Gamal El-Din

Oil sands process-affected water (OSPW) is a toxic and poorly biodegradable mixture of sand, silt, heavy metals, and organics. In this study, qualitative and quantitative comparisons of naphthenic acids (NAs) were done using ultraperformance liquid chromatography time-of-flight mass spectrometry (UPLC TOF-MS), Fourier transform ion cyclotron resonance (FT-ICR) MS, and ion mobility spectrometry (IMS). The unique combination of these analyses allowed for the determination and correlation of NAs, oxidized NAs, and heteroatom (sulfur or nitrogen) NAs. Despite its lower resolution, UPLC-TOF MS was shown to offer a comparable level of reliability and precision as the high resolution FT-ICR MS. Additionally, the impacts of ozonation (35 mg/L utilized ozone dose) and subsequent NAs degradation on OSPW toxicity were assessed via a collection of organisms and toxicity end points using Vibrio fischeri (nonspecific), specific fish macrophage antimicrobial responses, and fish olfactory responses. Fish macrophages exposed to ozonated OSPW for 1 week showed higher production of reactive oxygen and nitrogen intermediates; however, after 12 weeks the responses were reduced significantly. Fish olfactory tests suggested that OSPW interfered with their perception of odorants. Current results indicate that the quantification of NAs species, using novel analytical methods, can be combined with various toxicity methods to assess the efficiency of OSPW treatment processes.


Ozone-science & Engineering | 2015

Effects of Ozone and Ozone/Hydrogen Peroxide on the Degradation of Model and Real Oil-Sands-Process-Affected-Water Naphthenic Acids

Atefeh Afzal; Pamela Chelme-Ayala; Przemysław Drzewicz; Jonathan W. Martin; Mohamed Gamal El-Din

Naphthenic acids (NAs) are persistent compounds that contribute to the toxicity of oil sands process-affected water (OSPW). In this study, the effects of ozone and ozone/hydrogen peroxide on the NAs degradation in buffered water and OSPW were examined. Cyclohexanoic acid (CHA) was used as a model NAs compound in buffered water experiments at two different pHs, using radical scavengers. At pH 9, the addition of carbonate did not have any effect on CHA degradation. Additions of tert-butyl alcohol and tetranitromethane decreased the CHA degradation levels. For the OSPW experiments, degradation of acid-extractable fraction (AEF) and NAs was examined. Approximately 90% of AEF was oxidized in a semi-batch system. In a batch system, 99% of OSPW NAs were degraded. This study demonstrated that ozone and ozone/hydrogen peroxide could be suitable treatment processes for OSPW remediation.


Journal of Environmental Management | 2014

Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

Parastoo Pourrezaei; Alla Alpatova; Kambiz Khosravi; Przemysław Drzewicz; Yuan Chen; Pamela Chelme-Ayala; Mohamed Gamal El-Din

Collaboration


Dive into the Przemysław Drzewicz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Giesy

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Julie Anderson

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge