Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leslie F. Petrik is active.

Publication


Featured researches published by Leslie F. Petrik.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2006

Treatment of Acid Mine Drainage with Fly Ash: Removal of Major Contaminants and Trace Elements

M. W. Gitari; Leslie F. Petrik; O. Etchebers; David Key; Emmanuel I. Iwuoha; C. Okujeni

Acid mine drainage (AMD) has been reacted with two South African fly ashes in a batch setup in an attempt to evaluate their neutralization and major, trace elements removal capacity. Different fly ash: acid mine drainage ratios (FA: AMD) were stirred in a beaker for a set time and the process water analyzed for major, trace elements and sulphate content. The three factors that finally dictated the nature of the final solution in these neutralization reactions were the FA: AMD ratio, the contact time of the reaction and the chemistry of the AMD. Efficiency of the elements removal was directly linked to the amount of FA in the reaction mixture and to the final pH attained. Most elements attained ≈100% removal only when the pH of minimum solubility of their hydroxides was achieved (i.e., Mg = 10.49–11.0, Cu2+ = 6, Pb2+ = 6–7). Dissolution of CaO and subsequent precipitation of gypsum and formation of Al, Fe oxyhydroxysulphates, Fe oxyhydroxides with subsequent adsorption of sulphate contributed to the sulphate attenuation. Significant leaching of B, Sr, Ba and Mo was observed as the reaction progressed and was observed to increase with quantity of fly ash in the reaction mixture. However B was observed to decrease at high FA: AMD ratios probably as result of co-precipitation with CaCO3(s).


Water Air and Soil Pollution | 2013

A Review of Pharmaceuticals and Endocrine-Disrupting Compounds: Sources, Effects, Removal, and Detections

Jimoh O. Tijani; Ojo O. Fatoba; Leslie F. Petrik

There are growing concerns about the increasing trends of emerging micropollutants in the environment due to their potential negative impacts on natural ecosystems and humans. This has attracted attention from both governmental and non-governmental organisations worldwide. Pharmaceuticals, personal care products, and endocrine disruptors are continuously being released consciously or unconsciously into water sources due to poor regulatory frameworks especially in the developing countries. The effects of these contaminants are poorly known. They are not easily biodegradable and have become an environmental nuisance and public health issue. This has heightened the risk of exposure to their deleterious effects in such countries where the majority of the population are still struggling to have access to good quality drinking water supplies and better sanitation. With the rising fear of short- and long-term impacts of the ever-increasing number of persistent recalcitrant organic compounds accumulating in the environment, their removal is gradually becoming an issue to the water treatment industry. Hence, there is a need to develop functional techniques for the management of water contaminated by these emerging contaminants so as to increase the availability and access to safe and good-quality drinking water. We conducted a narrative review on these emerging micropollutants and examined their various documented sources, effects, as well as recent techniques for their effective removal. This becomes necessary due to the increasing occurrence of these pollutants in the aquatic and terrestrial environment. These levels are expected to further increase in the coming years as a consequence of the ever-increasing population density which undoubtedly characterizes developing economies. Our findings show that the present reported treatment techniques in the literature such as biological oxidation/biodegradation, coagulation/flocculation, ozonation, electrodialysis, reverse osmosis, sedimentation, filtration, and activated carbon were not designed for removal of these newly identified contaminants, and as such, the techniques are not sufficient and unable to completely degrade the compounds. We therefore recommended the need for concerted efforts to develop better techniques, especially combined advanced oxidative methods to address the shortcomings of and growing challenge to current practices.


Environmental Chemistry Letters | 2016

Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review

Jimoh O. Tijani; Ojo O. Fatoba; Omotola Babajide; Leslie F. Petrik

AbstractThe presence of emerging micropollutants such as pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated substances in the environment remains a great threat to the health and safety of humans and aquatic species. These micropollutants enter the environment via anthropogenic activities and have been detected in surface water, groundwater and even drinking water at nanogram per litre to microgram per litre concentration. To date, limited information exists on the fate, behaviours, and pathways of these micropollutants in the environment. The potential ecotoxicological effects on the receptors due to exposure to individual or mixture of these chemicals still remain unknown. This review provides an overview on pharmaceuticals, endocrine disrupting compounds, personal care products, nanomaterials and perfluorinated pollutants, with emphasis on their occurrences, effects, environmental fates, and potential risk of exposure in water, soil or sediment. Based on the literature survey, it was found that in spite of an extensive research and different developmental efforts on the challenges of emerging micropollutants, the solution to the problem of emerging micropollutants in the environment is far from being solved. The needs for behavioural change among citizens, strong political will and policy formulation on the part of government are identified as possible panacea for combating the growing influence of these potential damaging substances. Suggestions on proactive and precautionary measures that must be taken to protect the environment as well as guarantee the health and safety of humans and aquatic species are provided. Future research should concentrate on the development of a risk based screening models and framework that can predict the sources, fate and behaviours of emerging contaminants in the environment is recommended.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2009

Leaching characteristics of selected South African fly ashes: Effect of pH on the release of major and trace species

Wilson M. Gitari; Ojo O. Fatoba; Leslie F. Petrik; Viswanath R.K. Vadapalli

Fly ash samples from two South African coal-fired power stations were subjected to different leaching tests under alkaline and acidic conditions in an attempt to assess the effect of pH on the leachability of species from the fly ashes and also assess the potential impact of the fly ashes disposal on groundwater and the receiving environment. To achieve this, German Standard leaching (DIN-S4) and Acid Neutralization Capacity (ANC) tests were employed. Mineralogical characterization of the fresh fly ashes revealed mullite and quartz as the major mineral phases with minor peaks of CaO and calcite. Chemical characterization by X-ray fluorescence (XRF) spectrometry revealed that the two fly ashes are similar, and consist of SiO2, Al2O3, Fe2O3 and CaO as the main components with Cr, Co, Ni, Cu, Zn, V and Pb as minor components. Ca, Mg, Na, K and SO4 were significantly leached into solution under the two leaching conditions with the total amounts in ANC leachates higher than that of DIN-S4. This indicates that a large fraction of the soluble salts in unweathered fly ash are easily leached. These species represents the fraction that can be flushed off initially from the surface of ash particles on contacting the ash with water. Al and Si were only observed in the leachates of the ANC test. Results obtained from the total acid-digestion and DIN-S4 leaching test indicated some toxic elements in the fly ashes are not easily solubilized. The amounts of toxic trace elements such as As, Se, Cd, Cr and Pb leached out of the fly ashes when in contact with de-mineralized water (DIN-S4 test) were low and below the Target Water Quality Range (TWQR) of South Africa. This is explained by their low concentrations in the fly ashes and their solubility dependence on the pH of the leaching solution. However the amounts of some minor elements such as B, Mn, Fe, As and Se leached out at lower pH ranging between 10 to 4 (ANC test) were slightly higher than the TWQR, an indication that the pH of the leaching solution plays a significant role on the leaching of species in fly ash. The high concentrations of the toxic elements released from the fly ashes at lower pH gives an indication that the disposal of the fly ash could have adverse effects on the receiving environment if the pH of the solution contacting the ashes is not properly monitored. The study indicated that on contact with water in a disposal scenario fly ash will release high amounts of soluble species.


Talanta | 2004

The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites.

Vernon S. Somerset; Leslie F. Petrik; Richard A. White; Michael J. Klink; David Key; Emmanuel I. Iwuoha

The use and application of synthetic zeolites for ion exchange, adsorption and catalysis has shown enormous potential in industry. In this study, X-ray fluorescence (XRF) analysis was used to determine Si and Al in fly ash (FA) precipitates. The Si and Al contents of the fly ash precipitates were used as indices for the alkaline hydrothermal conversion of the fly ash compounds into zeolites. Precipitates were collected by using a co-disposal reaction wherein fly ash is reacted with acid mine drainage (AMD). These co-disposal precipitates were then analysed by XRF spectrometry for quantitative determination of SiO(2) and Al(2)O(3). The [SiO(2)]/[Al(2)O(3)] ratio obtained in the precipitates range from 1.4 to 2.5. The [SiO(2)]/[Al(2)O(3)] ratio was used to predict whether the fly ash precipitates could successfully be converted to faujasite zeolitic material by the synthetic method of [J. Haz. Mat. B 77 (2000) 123]. If the [SiO(2)]/[Al(2)O(3)] ratio is higher than 1.5 in the fly ash precipitates, it favours the formation of faujasite. The zeolite synthesis included an alkaline hydrothermal conversion of the co-disposal precipitates, followed by aging for 8h and crystallization at 100 degrees C. Different factors were investigated during the synthesis of zeolite to ascertain their influence on the end product. The factors included the amount of water in the starting material, composition of fly ash related starting material and the FA:NaOH ratio used for fusing the starting material. The mineralogical and physical analysis of the zeolitic material produced was performed by X-ray diffraction (XRD) and nitrogen Brunauer-Emmett-Teller (N(2) BET) surface analysis. Scanning electron microscopy (SEM) was used to determine the morphology of the zeolites, while inductively coupled mass spectrometry (ICP-MS), Fourier transformed infrared spectrometry (FT-IR) and Cation exchange capacity (CEC) [Report to Water Research Commission, RSA (2003) 15] techniques were used for chemical characterisation. The heavy and trace metal concentrations of the zeolite products were compared to that of the post-synthesis filtrate and of the precipitate materials used as Si and Al feed stock for zeolite formation, in order to determine the trends (increase or decrease) and ultimate fate of any toxic metals incorporated in the co-disposed precipitated residues.


Water Air and Soil Pollution | 2014

A review of combined advanced oxidation technologies for the removal of organic pollutants from water

Jimoh O. Tijani; Ojo O. Fatoba; Godfrey Madzivire; Leslie F. Petrik

Water pollution through natural and anthropogenic activities has become a global problem causing short-and long-term impact on human and ecosystems. Substantial quantity of individual or mixtures of organic pollutants enter the surface water via point and nonpoint sources and thus affect the quality of freshwater. These pollutants are known to be toxic and difficult to remove by mere biological treatment. To date, most researches on the removal of organic pollutants from wastewater were based on the exploitation of individual treatment process. This single-treatment technology has inherent challenges and shortcomings with respect to efficiency and economics. Thus, application of two advanced treatment technologies characterized with high efficiency with respect to removal of primary and disinfection by-products in wastewater is desirable. This review article focuses on the application of integrated technologies such as electrohydraulic discharge with heterogeneous photocatalysts or sonophotocatalysis to remove target pollutants. The information gathered from more than 100 published articles, mostly laboratories studies, shows that process integration effectively remove and degrade recalcitrant toxic contaminants in wastewater better than single-technology processing. This review recommends an improvement on this technology (integrated electrohydraulic discharge with heterogeneous photocatalysts) viz-a-vis cost reduction in order to make it accessible and available in the rural and semi-urban settlement. Further recommendation includes development of an economic model to establish the cost implications of the combined technology. Proper monitoring, enforcement of the existing environmental regulations, and upgrading of current wastewater treatment plants with additional treatment steps such as photocatalysis and ozonation will greatly assist in the removal of environmental toxicants.


Materials | 2013

Synthesis of zeolites Na-P1 from South African coal fly ash: effect of impeller design and agitation

Dakalo Mainganye; Tunde Victor Ojumu; Leslie F. Petrik

South African fly ash has been shown to be a useful feedstock for the synthesis of some zeolites. The present study focuses on the effect of impeller design and agitation rates on the synthesis of zeolite Na-P1 which are critical to the commercialization of this product. The effects of three impeller designs (4-flat blade, Anchor and Archimedes screw impellers) and three agitation speeds (150, 200 and 300 rpm) were investigated using a modified previously reported synthesis conditions; 48 hours of ageing at 47 °C and static hydrothermal treatment at 140 °C for 48 hours. The experimental results demonstrated that the phase purity of zeolite Na-P1 was strongly affected by the agitation rate and the type of impeller used during the ageing step of the synthesis process. Although zeolite Na-P1 was synthesized with a space time yield (STY) of 15 ± 0.4 kg d−1m−3 and a product yield of 0.98±0.05 g zeolites/g fly ash for each impeller at different agitation speeds, zeolite formation was assessed to be fairly unsuccessful in some cases due the occurrence of undissolved mullite and/or the formation of impurities such as hydroxysodalite with the zeolitic product. This study also showed that a high crystalline zeolite Na-P1 can be synthesized from South African coal fly ash using a 4-flat blade impeller at an agitation rate of 200 rpm during the ageing step at 47 °C for 48 hours followed by static hydrothermal treatment at 140 °C for 48 hours.


Ultrasonics Sonochemistry | 2016

Synthesis of zeolite A from coal fly ash using ultrasonic treatment – A replacement for fusion step

Tunde Victor Ojumu; Pieter W. Du Plessis; Leslie F. Petrik

The synthesis of zeolites from fly ash has become an increasingly promising remedy to the crisis of coal fly ash production and disposal in South Africa. In recent studies, South African fly ash was proven to be a suitable feedstock for the synthesis of essential industrially used zeolite A. However, the process involves a costly energy intensive step whereby fly ash is fused at high temperatures, which may make the process economically unattractive on a large scale. The aim of this study is to investigate the possibility of replacing high temperature fusion with less energy intensive sonochemical treatment for the synthesis of zeolite A. Sonochemical treatment was first thought possible due to the violent cavitation caused by high intensity sonication. The results of the study showed that fusion can be replaced by 10 min of high intensity sonication. The incorporation of sonication also consequently reduced the crystallization temperature of the process making it possible to synthesize a pure phase zeolite A at lower temperatures and reduced times. This study effectively developed a novel process to replace the energy intensive fusion step with a short, easy and inexpensive treatment. Scale up of this synthesis approach may proffer a promising alternative option to the anticipated energy demand of the synthesis of fly ash-based zeolite with fusion method.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2012

Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes

Nicholas M. Musyoka; Leslie F. Petrik; Wilson M. Gitari; Gillian Balfour; Eric Hums

This study was aimed at optimizing the synthesis conditions for pure phase zeolite Na-P1 from three coal fly ashes obtained from power stations in the Mpumalanga province of South Africa. Synthesis variables evaluated were: hydrothermal treatment time (12–48 hours), temperature (100–160°C) and varying molar quantities of water during the hydrothermal treatment step (H2O:SiO2 molar ratio ranged between 0–0.49). The optimum synthesis conditions for preparing pure phase zeolite Na-P1 were achieved when the molar regime was 1 SiO2: 0.36 Al2O3: 0.59 NaOH: 0.49 H2O and ageing was done at 47°C for 48 hours. The optimum hydrothermal treatment time and temperature was 48 hours and 140°C, respectively. Fly ashes sourced from two coal-fired power plants (A, B) were found to produce nearly same high purity zeolite Na-P1 under identical conditions whereas the third fly ash (C) lead to a low quality zeolite Na-P1 under these conditions. The cation exchange capacity for the high pure phase was found to be 4.11 meq/g. These results highlight the fact that adjustment of reactant composition and presynthesis or synthesis parameters, improved quality of zeolite Na-P1 can be achieved and hence an improved potential for application of zeolites prepared from coal fly ash.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2005

Alkaline Hydrothermal Conversion of Fly Ash Filtrates Into Zeolites 2: Utilization in Wastewater Treatment

Vernon S. Somerset; Leslie F. Petrik; Emmanuel I. Iwuoha

Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash–derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.

Collaboration


Dive into the Leslie F. Petrik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas M. Musyoka

Council for Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Olanrewaju Fatoba

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Emmanuel I. Iwuoha

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Ojo O. Fatoba

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

R. O. Akinyeye

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Jimoh O. Tijani

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Patrick Ndungu

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar

Segun A. Akinyemi

University of the Western Cape

View shared research outputs
Top Co-Authors

Avatar

Godfrey Madzivire

University of the Western Cape

View shared research outputs
Researchain Logo
Decentralizing Knowledge