Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leslie Obert is active.

Publication


Featured researches published by Leslie Obert.


Nature Biotechnology | 2010

Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium

Frank Dieterle; Frank D. Sistare; Federico Goodsaid; Marisa Papaluca; Josef S. Ozer; Craig P. Webb; William Baer; Anthony J. Senagore; Matthew J. Schipper; Jacky Vonderscher; Stefan Sultana; David Gerhold; Jonathan A. Phillips; Gerard Maurer; Kevin Carl; David Laurie; Ernie Harpur; Manisha Sonee; Daniela Ennulat; Dan Holder; Dina Andrews-Cleavenger; Yi Zhong Gu; Karol L. Thompson; Peter L. Goering; Jean Marc Vidal; Eric Abadie; Romaldas Mačiulaitis; David Jacobson-Kram; Albert DeFelice; Elizabeth Hausner

The first formal qualification of safety biomarkers for regulatory decision making marks a milestone in the application of biomarkers to drug development. Following submission of drug toxicity studies and analyses of biomarker performance to the Food and Drug Administration (FDA) and European Medicines Agency (EMEA) by the Predictive Safety Testing Consortiums (PSTC) Nephrotoxicity Working Group, seven renal safety biomarkers have been qualified for limited use in nonclinical and clinical drug development to help guide safety assessments. This was a pilot process, and the experience gained will both facilitate better understanding of how the qualification process will probably evolve and clarify the minimal requirements necessary to evaluate the performance of biomarkers of organ injury within specific contexts.


Nature Biotechnology | 2010

Towards consensus practices to qualify safety biomarkers for use in early drug development

Frank D. Sistare; Frank Dieterle; Sean P. Troth; Daniel J. Holder; David Gerhold; Dina Andrews-Cleavenger; William Baer; Graham Betton; Denise I. Bounous; Kevin Carl; Nathaniel Collins; Peter L. Goering; Federico Goodsaid; Yi Zhong Gu; Valerie Guilpin; Ernie Harpur; Alita Hassan; David Jacobson-Kram; Peter Kasper; David Laurie; Beatriz Silva Lima; Romaldas Mačiulaitis; William Mattes; Gerard Maurer; Leslie Obert; Josef S. Ozer; Marisa Papaluca-Amati; Jonathan A. Phillips; Mark Pinches; Matthew J. Schipper

Application of any new biomarker to support safety-related decisions during regulated phases of drug development requires provision of a substantial data set that critically assesses analytical and biological performance of that biomarker. Such an approach enables stakeholders from industry and regulatory bodies to objectively evaluate whether superior standards of performance have been met and whether specific claims of fit-for-purpose use are supported. It is therefore important during the biomarker evaluation process that stakeholders seek agreement on which critical experiments are needed to test that a biomarker meets specific performance claims, how new biomarker and traditional comparators will be measured and how the resulting data will be merged, analyzed and interpreted.


American Journal of Pathology | 2011

Increased Serum Enzyme Levels Associated with Kupffer Cell Reduction with No Signs of Hepatic or Skeletal Muscle Injury

Zaher A. Radi; Petra Koza-Taylor; Rosonald R. Bell; Leslie Obert; Herbert A. Runnels; Jean Beebe; Michael P. Lawton; Seth Sadis

Macrophage colony-stimulating factor (M-CSF) is a hematopoietic growth factor that is responsible for the survival and proliferation of monocytes and the differentiation of monocytes into macrophages, including Kupffer cells (KCs) in the liver. KCs play an important role in the clearance of several serum enzymes, including aspartate aminotransferase and creatine kinase, that are typically elevated as a result of liver or skeletal muscle injury. We used three distinct animal models to investigate the hypothesis that increases in the levels of serum enzymes can be the result of decreases in KCs in the apparent absence of hepatic or skeletal muscle injury. Specifically, neutralizing M-CSF activity via a novel human monoclonal antibody reduced the CD14(+)CD16(+) monocyte population, depleted KCs, and increased aspartate aminotransferase and creatine kinase serum enzyme levels in cynomolgus macaques. In addition, the treatment of rats with clodronate liposomes depleted KCs and led to increased serum enzyme levels, again without evidence of tissue injury. Finally, in the osteopetrotic (Csf1(op)/Csf1(op)) mice lacking functional M-CSF and having reduced levels of KCs, the levels of serum enzymes are higher than in wild-type littermates. Together, these findings support a mechanism for increases in serum enzyme levels through M-CSF regulation of tissue macrophage homeostasis without concomitant histopathological changes in either the hepatic or skeletal system.


Toxicologic Pathology | 2007

An Immunohistochemical Approach to Differentiate Hepatic Lipidosis from Hepatic Phospholipidosis in Rats

Leslie Obert; Gregg Sobocinski; Walter F. Bobrowski; Alan L. Metz; Mark D. Rolsma; Douglas M. Altrogge; Robert W. Dunstan

Hepatocellular vacuolation can be a diagnostic challenge since cytoplasmic accumulations of various substances (lipid, water, phospholipids, glycogen, and plasma) can have a similar morphology. Cytoplasmic accumulation of phospholipids following administration of cationic amphiphilic drugs (CAD) can be particularly difficult to differentiate from nonphosphorylated lipid accumulations at the light microscopic level. Histochemical methods (Sudan Black, Oil Red-O, Nile Blue, etc.) can be used to identify both nonphosphorylated and/or phosphorylated lipid accumulations, but these techniques require non-paraffin-embedded tissue and are only moderately sensitive. Thus, electron microscopy is often utilized to achieve a definitive diagnosis based upon the characteristic morphologic features of phospholipid accumulations; however, this is a low throughput and labor intense procedure. In this report, we describe the use of immunohistochemical staining for LAMP-2 (a lysosome-associated protein) and adipophilin (a protein that forms the membrane around non-lysosomal lipid droplets) to differentiate phospholipidosis and lipidosis, respectively in the livers of rats. This staining procedure can be performed on formalin-fixed paraffin embedded tissues, is more sensitive than histochemistry, and easier to perform than ultrastructural evaluation.


Toxicological Sciences | 2010

The Role of Hypoxia in 2-Butoxyethanol–Induced Hemangiosarcoma

Daphna Laifenfeld; Annalyn Gilchrist; David Drubin; Milena Jorge; Sean F. Eddy; Brian P. Frushour; Bill Ladd; Leslie Obert; Mark Gosink; Jon C. Cook; Kay A. Criswell; Christopher Somps; Petra Koza-Taylor; Keith O. Elliston; Michael P. Lawton

To understand the molecular mechanisms underlying compound-induced hemangiosarcomas in mice, and therefore, their human relevance, a systems biology approach was undertaken using transcriptomics and Causal Network Modeling from mice treated with 2-butoxyethanol (2-BE). 2-BE is a hemolytic agent that induces hemangiosarcomas in mice. We hypothesized that the hemolysis induced by 2-BE would result in local tissue hypoxia, a well-documented trigger for endothelial cell proliferation leading to hemangiosarcoma. Gene expression data from bone marrow (BM), liver, and spleen of mice exposed to a single dose (4 h) or seven daily doses of 2-BE were used to develop a mechanistic model of hemangiosarcoma. The resulting mechanistic model confirms previous work proposing that 2-BE induces macrophage activation and inflammation in the liver. In addition, the model supports local tissue hypoxia in the liver and spleen, coupled with increased erythropoeitin signaling and erythropoiesis in the spleen and BM, and suppression of mechanisms that contribute to genomic stability, events that could be contributing factors to hemangiosarcoma formation. Finally, an immunohistochemistry method (Hypoxyprobe) demonstrated that tissue hypoxia was present in the spleen and BM. Together, the results of this study identify molecular mechanisms that initiate hemangiosarcoma, a key step in understanding safety concerns that can impact drug decision processes, and identified hypoxia as a possible contributing factor for 2-BE–induced hemangiosarcoma in mice.


Journal of Inflammation | 2006

Detection of cytokine protein expression in mouse lung homogenates using suspension bead array

Eric McDuffie; Leslie Obert; Jonathan Chupka; Robert E. Sigler

BackgroundThe objective for this present study was to determine whether or not suspension bead array is a feasible method to detect changes in cytokine protein expression in mouse lung tissue homogenates. Here, we report on suspension bead array as a feasible method for detection of lipopolysaccharide (LPS)-evoked changes in cytokine protein expression in mouse lung tissue homogenates.Materials and methodsMice were treated (0.2 ml, intraperitoneal, i.p.) with phosphate buffered saline (PBS) or LPS (0.25 mg/ml) and sacrificed at either 2- or 24-hours post treatment. Formalin-fixed and paraffin-embedded lung sections were evaluated by light microscopy. Flash frozen lung tissues were homogenized for measurement of various cytokine protein expression levels using suspension bead array, antibody array and ELISA. Comparison between groups was performed using a Wilcoxon signed rank test.ResultsPulmonary perivascular edema and an accumulation of mixed cell infiltrates within blood and lymphatic vessels, as well as in the adjacent interstitium, were present at both 2- and 24-hours following LPS treatment. A minimal increase in the number of alveolar macrophages was also observed in the 24-hour LPS-treated mice only. The suspension bead array assay revealed statistically significant increases in mouse lung tissue homogenate levels of interleukin-6 (IL-6) and granulocyte/macrophage colony-stimulating factor (GM-CSF) proteins and a decrease in IL-2 protein at 24-hours post LPS-treatment only. Similar cytokine protein expression patterns were observed using antibody array. Significantly increased IL-6 protein expression levels were also detected using ELISA, which correlated with the suspension bead array data.ConclusionThe present study shows that suspension bead array is a feasible method to detect changes in cytokine protein expression in mouse lung tissue homogenates.


Clinical Cancer Research | 2017

Liver Microvascular Injury and Thrombocytopenia of Antibody-Calicheamicin Conjugates in Cynomolgus Monkeys - Mechanism and Monitoring

Magali Guffroy; Hadi Falahatpisheh; Kathleen Biddle; John M. Kreeger; Leslie Obert; Karen Walters; Richard Goldstein; Germaine Boucher; Tim M. Coskran; William J. Reagan; Danielle Sullivan; Chunli Huang; Sharon A. Sokolowski; Richard P. Giovanelli; Hans-Peter Gerber; Martin Finkelstein; Nasir K. Khan

Purpose: Adverse reactions reported in patients treated with antibody–calicheamicin conjugates such as gemtuzumab ozogamicin (Mylotarg) and inotuzumab ozogamicin include thrombocytopenia and sinusoidal obstruction syndrome (SOS). The objective of this experimental work was to investigate the mechanism for thrombocytopenia, characterize the liver injury, and identify potential safety biomarkers. Experimental Design: Cynomolgus monkeys were dosed intravenously at 6 mg/m2/dose once every 3 weeks with a nonbinding antibody–calicheamicin conjugate (PF-0259) containing the same linker-payload as gemtuzumab ozogamicin and inotuzumab ozogamicin. Monkeys were necropsied 48 hours after the first administration (day 3) or 3 weeks after the third administration (day 63). Results: PF-0259 induced acute thrombocytopenia (up to 86% platelet reduction) with nadirs on days 3 to 4. There was no indication of effects on megakaryocytes in bone marrow or activation of platelets in peripheral blood. Microscopic evaluation of liver from animals necropsied on day 3 demonstrated midzonal degeneration and loss of sinusoidal endothelial cells (SECs) associated with marked platelet accumulation in sinusoids. Liver histopathology on day 63 showed variable endothelial recovery and progression to a combination of sinusoidal capillarization and sinusoidal dilation/hepatocellular atrophy, consistent with early SOS. Among biomarkers evaluated, there were early and sustained increases in serum hyaluronic acid (HA) that correlated well with serum aspartate aminotransferase and liver microscopic changes, suggesting that HA may be a sensitive diagnostic marker of the liver microvascular injury. Conclusions: These data support the conclusion that target-independent damage to liver SECs may be responsible for acute thrombocytopenia (through platelet sequestration in liver sinusoids) and development of SOS. Clin Cancer Res; 23(7); 1760–70. ©2016 AACR.


Toxicological Sciences | 2012

Pregabalin Induces Hepatic Hypoxia and Increases EndothelialCell Proliferation in Mice, a Process Inhibited by DietaryVitamin E Supplementation

Kay A. Criswell; Jon C. Cook; Dennis C. Morse; Michael T. Lawton; Christopher Somps; Leslie Obert; Marc Roy; Sharon A. Sokolowski; Petra Koza-Taylor; Jennifer L. Colangelo; Kimberly A. Navetta; Joseph T. Brady; David G. Pegg; Zbigniew Wojcinski; Ramin Rahbari; Steven K. Duddy; Timothy Anderson

The preceding article identified key components of pregabalins mode of action on nongenotoxic hemangiosarcoma formation in mice, including increased serum bicarbonate leading to decreased respiratory rate, increased blood pH, increased venous oxygen saturation, increased vascular endothelial growth factor and basic fibroblast growth factor expression, increased hepatic vascular endothelial growth factor receptor 2 expression, and increased iron-laden macrophages. Increased platelet count and platelet activation were early, species-specific biomarkers in mice. Dysregulated erythropoiesis, macrophage activation, and elevations of tissue growth factors were consistent with the unified mode of action for nongenotoxic hemangiosarcoma recently proposed at an international hemangiosarcoma workshop (Cohen, S. M., Storer, R. D., Criswell, K. A., Doerrer, N. G., Dellarco, V. L., Pegg, D. G., Wojcinski, Z. W., Malarkey, D. E., Jacobs, A. C., Klaunig, J. E., et al. (2009). Hemangiosarcoma in rodents: Mode-of-action evaluation and human relevance. Toxicol. Sci. 111, 4-18). In this article, we present evidence that pregabalin induces hypoxia and increases endothelial cell (EC) proliferation in a species-specific manner. Dietary administration of pregabalin produced a significant 35% increase in an immunohistochemical stain for hypoxia (Hypoxyprobe) in livers from pregabalin-treated mice. Increased Hypoxyprobe staining was not observed in the liver, bone marrow, or spleen of rats, supporting the hypothesis that pregabalin produces local tissue hypoxia in a species-specific manner. Transcriptional analysis supports that rats, unlike mice, adapt to pregabalin-induced hypoxia. Using a dual-label method, increased EC proliferation was observed as early as 2 weeks in mouse liver and 12 weeks in bone marrow following pregabalin administration. These same assays showed decreased EC proliferation in hepatic ECs of rats, further supporting species specificity. Dietary supplementation with vitamin E, which is known to have antioxidant and antiangiogenic activity, inhibited pregabalin-induced increases in mouse hepatic EC proliferation, providing confirmatory evidence for the proposed mode of action and its species-specific response.


Cytometry Part A | 2007

A practical method to determine the amount of tissue to analyze using laser scanning cytometry

John A. Wijsman; Leslie Obert; Jerome Paulissen; Rosario Garrido; Katherine A. Toy; Robert W. Dunstan

Laser scanning cytometry (LSC) is a new technology similar to flow cytometry but generates data from analysis of successive microscopic fields. Unlike its use in other applications, LSC‐generated data are not random when used for tissue sections, but are dependent on the microanatomy of the tissue and the distribution and expression of the protein under investigation. For valid LSC analysis, the data generated requires the evaluation of a sufficient tissue area to ensure an accurate representation of expression within the tissue of interest.


Toxicologic Pathology | 2014

Hemodynamic correlates of drug-induced vascular injury in the rat using high-frequency ultrasound imaging.

Terri Swanson; Teri Conte; Ben Deeley; Susan Portugal; John M. Kreeger; Leslie Obert; E. Clive Joseph; Todd Wisialowski; Sharon A. Sokolowski; Catherine Rief; Paul Nugent; Michael P. Lawton; Bradley E. Enerson

Several classes of drugs have been shown to cause drug-induced vascular injury (DIVI) in preclinical toxicity studies. Measurement of blood flow and vessel diameter in numerous vessels and across various tissues by ultrasound imaging has the potential to be a noninvasive translatable biomarker of DIVI. Our objective was to demonstrate the utility of high-frequency ultrasound imaging for measuring changes in vascular function by evaluating blood flow and vessel diameter in the superior mesenteric arteries (SMA) of rats treated with compounds that are known to cause DIVI and are known vasodilators in rat: fenoldopam, CI-1044, and SK&F 95654. Blood flow, vessel diameter, and other parameters were measured in the SMA at 4, 8, and 24 hr after dosing. Mild to moderate perivascular accumulations of mononuclear cells, neutrophils in tunica adventitia, and superficial tunica media as well as multifocal hemorrhage and necrosis in the tunica media were found in animals 24 hr after treatment with fenoldopam and SK&F 95654. Each compound caused marked increases in blood flow and shear stress as early as 4 hr after dosing. These results suggest that ultrasound imaging may constitute a functional correlate for the microscopic finding of DIVI in the rat.

Researchain Logo
Decentralizing Knowledge