Petra Koza-Taylor
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Petra Koza-Taylor.
Endocrinology | 1998
Donna N. Petersen; George T. Tkalcevic; Petra Koza-Taylor; Tom Turi; Thomas A. Brown
The effects of estrogen and estrogen agonists can be mediated by estrogen receptor α (ERα) and estrogen receptor β (ERβ). We now report the identification and initial characterization of several novel isoforms of rat ERβ messenger RNA (mRNA). The most abundant of these mRNA variants we have called ERβ2. ERβ2 had an in-frame insertion of 54 nucleotides that resulted in the predicted insertion of 18 amino acids within the ligand binding domain. We demonstrated by semiquantitative RT-PCR and RNase protection that ERβ2 mRNA was expressed at levels equal to those of the previously published ERβ (ERβ1) in ovary, prostate, pituitary, and muscle. In tissues of the nervous system, including frontal cortex, hippocampus, and hypothalamus, ERβ1 was present in a 2- to 6-fold greater abundance than ERβ2. We have also detected variants of both ERβ1 and ERβ2 mRNAs that contained deletions of 117 bp encompassing the region encoding the second zinc finger of the DNA binding domain. All four mRNA species were efficiently tr...
The EMBO Journal | 2003
Arvind Rajpal; Yuri A. Cho; Biana Yelent; Petra Koza-Taylor; Dongling Li; Elaine Chen; Michael Whang; Chulho Kang; Thomas G. Turi; Astar Winoto
Nur77 is a nuclear orphan steroid receptor that has been implicated in negative selection. Expression of Nur77 in thymocytes and cell lines leads to apoptosis through a mechanism that remains unclear. In some cell lines, Nur77 was reported to act through a transcription‐independent mechanism involving translocation to mitochondria, leading to cytochrome c release. However, we show here that Nur77‐mediated apoptosis in thymocytes does not involve cytoplasmic cytochrome c release and cannot be rescued by Bcl‐2. Microarray analysis shows that Nur77 induces many genes, including two novel genes (NDG1, NDG2) and known apoptotic genes FasL and TRAIL. Characterization of NDG1 and NDG2 indicates that NDG1 initiates a novel apoptotic pathway in a Bcl‐2‐independent manner. Thus Nur77‐mediated apoptosis in T cells involves Bcl‐2 independent transcriptional activation of several known and novel apoptotic pathways.
American Journal of Pathology | 2011
Zaher A. Radi; Petra Koza-Taylor; Rosonald R. Bell; Leslie Obert; Herbert A. Runnels; Jean Beebe; Michael P. Lawton; Seth Sadis
Macrophage colony-stimulating factor (M-CSF) is a hematopoietic growth factor that is responsible for the survival and proliferation of monocytes and the differentiation of monocytes into macrophages, including Kupffer cells (KCs) in the liver. KCs play an important role in the clearance of several serum enzymes, including aspartate aminotransferase and creatine kinase, that are typically elevated as a result of liver or skeletal muscle injury. We used three distinct animal models to investigate the hypothesis that increases in the levels of serum enzymes can be the result of decreases in KCs in the apparent absence of hepatic or skeletal muscle injury. Specifically, neutralizing M-CSF activity via a novel human monoclonal antibody reduced the CD14(+)CD16(+) monocyte population, depleted KCs, and increased aspartate aminotransferase and creatine kinase serum enzyme levels in cynomolgus macaques. In addition, the treatment of rats with clodronate liposomes depleted KCs and led to increased serum enzyme levels, again without evidence of tissue injury. Finally, in the osteopetrotic (Csf1(op)/Csf1(op)) mice lacking functional M-CSF and having reduced levels of KCs, the levels of serum enzymes are higher than in wild-type littermates. Together, these findings support a mechanism for increases in serum enzyme levels through M-CSF regulation of tissue macrophage homeostasis without concomitant histopathological changes in either the hepatic or skeletal system.
Oncogene | 2003
Yan Ma; Petra Koza-Taylor; Debra A. DiMattia; Lynn M. Hames; Haoning Fu; Konstantin H. Dragnev; Tom Turi; Jean Beebe; Sarah J. Freemantle; Ethan Dmitrovsky
Retinoids, the natural and synthetic derivatives of vitamin A, have a role in cancer treatment and prevention. There is a need to reveal mechanisms that account for retinoid response or resistance. This study identified candidate all-trans-retinoic acid (RA) target genes linked to growth suppression in BEAS-2B human bronchial epithelial cells. Microarray analyses were performed using Affymetrix arrays. A total of 11 RA-induced species were validated by reverse transcription polymerase chain reaction (RT-PCR), Western or Northern analyses. Three of these species were novel candidate RA-target genes in human bronchial epithelial cells. These included: placental bone morphogenetic protein (PLAB), polyamine oxidase isoform 1 (PAOh1) and E74-like factor 3 (ELF3). Expression patterns were studied in RA-resistant BEAS-2B-R1 cells. In BEAS-2B-R1 cells, RA dysregulated the expression of the putative lymphocyte G0/G1 switch gene (G0S2), heme oxygenase 1 (HMOX1), tumor necrosis factor-α-induced protein 2 (TNFAIP2), inhibitor of DNA binding 1(Id1), fos-like antigen 1 (FOSL1), transglutaminase 2 (TGM2), asparagine synthetase (ASNS), PLAB, PAOh1 and ELF3, while prominent induction of insulin-like growth-factor-binding protein 6 (IGFBP6) still occurred. In summary, this study identified 11 candidate RA-target genes in human bronchial epithelial cells including three novel species. Expression studies in BEAS-2B-R1 cells indicated that several were directly implicated in RA signaling, since their aberrant expression was linked to RA resistance of human bronchial epithelial cells.
Cancer Research | 2004
Ian Pitha-Rowe; W. Jeffrey Petty; Qing Feng; Petra Koza-Taylor; Debra A. DiMattia; Lynn Pinder; Konstantin H. Dragnev; Natalie Memoli; Vincent A. Memoli; Tom Turi; Jean Beebe; Sutisak Kitareewan; Ethan Dmitrovsky
Retinoids, natural and synthetic derivatives of vitamin A, are active in cancer therapy and chemoprevention. We reported previously that all-trans-retinoic acid (RA) treatment prevented carcinogen-induced transformation of immortalized human bronchial epithelial (HBE) cells. To identify cancer chemopreventive mechanisms, immortalized (BEAS-2B), carcinogen-transformed (BEAS-2BNNK), and RA-chemoprevented (BEAS-2BNNK/RA) HBE cells were used to conduct microarray analyses independently. Species increased in chemoprevented as compared with immortalized HBE cells (group I) and those augmented in chemoprevented as compared with transformed HBE cells (group II) included known RA-target genes as well as previously unrecognized RA-target genes in HBE cells. Unexpectedly, both groups were also enriched for interferon-stimulated genes. One interferon-stimulated gene of particular interest was UBE1L, the ubiquitin-activating enzyme E1-like protein. UBE1L expression was also induced after prolonged RA-treatment of immortalized HBE cells. UBE1L mRNA was shown previously as repressed in certain lung cancer cell lines, directly implicating UBE1L in lung carcinogenesis. Notably, UBE1L immunoblot expression was reduced in a subset of malignant as compared with adjacent normal lung tissues that were examined. Immunohistochemical analyses were performed using a new assay developed to detect this species using rabbit polyclonal anti-UBE1L antibodies independently raised against the amino- or carboxyl-termini of UBE1L. Studies done on paraffin-embedded and fixed tissues revealed abundant UBE1L, but low levels of cyclin D1 expression in the normal human bronchial epithelium, indicating an inverse relationship existed between these species. To study this further, cotransfection into HBE cells of wild-type or mutant UBE1L species was accomplished. In a dose-dependent manner, wild-type but not mutant UBE1L species repressed cyclin D1 expression. This implicated UBE1L in a retinoid chemoprevention mechanism involving cyclin D1 repression described previously. Taken together, these findings directly implicate UBE1L as a candidate-pharmacologic target for lung cancer chemoprevention. These findings also provide a mechanistic basis for the tumor suppressive effects of UBE1L through cyclin D1 repression.
Toxicological Sciences | 2010
Daphna Laifenfeld; Annalyn Gilchrist; David Drubin; Milena Jorge; Sean F. Eddy; Brian P. Frushour; Bill Ladd; Leslie Obert; Mark Gosink; Jon C. Cook; Kay A. Criswell; Christopher Somps; Petra Koza-Taylor; Keith O. Elliston; Michael P. Lawton
To understand the molecular mechanisms underlying compound-induced hemangiosarcomas in mice, and therefore, their human relevance, a systems biology approach was undertaken using transcriptomics and Causal Network Modeling from mice treated with 2-butoxyethanol (2-BE). 2-BE is a hemolytic agent that induces hemangiosarcomas in mice. We hypothesized that the hemolysis induced by 2-BE would result in local tissue hypoxia, a well-documented trigger for endothelial cell proliferation leading to hemangiosarcoma. Gene expression data from bone marrow (BM), liver, and spleen of mice exposed to a single dose (4 h) or seven daily doses of 2-BE were used to develop a mechanistic model of hemangiosarcoma. The resulting mechanistic model confirms previous work proposing that 2-BE induces macrophage activation and inflammation in the liver. In addition, the model supports local tissue hypoxia in the liver and spleen, coupled with increased erythropoeitin signaling and erythropoiesis in the spleen and BM, and suppression of mechanisms that contribute to genomic stability, events that could be contributing factors to hemangiosarcoma formation. Finally, an immunohistochemistry method (Hypoxyprobe) demonstrated that tissue hypoxia was present in the spleen and BM. Together, the results of this study identify molecular mechanisms that initiate hemangiosarcoma, a key step in understanding safety concerns that can impact drug decision processes, and identified hypoxia as a possible contributing factor for 2-BE–induced hemangiosarcoma in mice.
Toxicological Sciences | 2014
Satoko Kakiuchi-Kiyota; Petra Koza-Taylor; Srinivasa R. Mantena; Linda Nelms; Ahmed Enayetallah; Brett D. Hollingshead; Andrew D. Burdick; Lori A. Reed; James Warneke; Lawrence O. Whiteley; Anne M. Ryan; Nagappan Mathialagan
Development of LNA gapmers, antisense oligonucleotides used for efficient inhibition of target RNA expression, is limited by non-target mediated hepatotoxicity issues. In the present study, we investigated hepatic transcription profiles of mice administered non-toxic and toxic LNA gapmers. After repeated administration, a toxic LNA gapmer (TS-2), but not a non-toxic LNA gapmer (NTS-1), caused hepatocyte necrosis and increased serum alanine aminotransferase levels. Microarray data revealed that, in addition to gene expression patterns consistent with hepatotoxicity, 17 genes in the clathrin-mediated endocytosis (CME) pathway were altered in the TS-2 group. TS-2 significantly down-regulated myosin 1E (Myo1E), which is involved in release of clathrin-coated pits from plasma membranes. To map the earliest transcription changes associated with LNA gapmer-induced hepatotoxicity, a second microarray analysis was performed using NTS-1, TS-2, and a severely toxic LNA gapmer (HTS-3) at 8, 16, and 72 h following a single administration in mice. The only histopathological change observed was minor hepatic hypertrophy in all LNA groups across time points. NTS-1, but not 2 toxic LNA gapmers, increased immune response genes at 8 and 16 h but not at 72 h. TS-2 significantly perturbed the CME pathway only at 72 h, while Myo1E levels were decreased at all time points. In contrast, HTS-3 modulated DNA damage pathway genes at 8 and 16 h and also modulated the CME pathway genes (but not Myo1E) at 16 h. Our results may suggest that different LNAs modulate distinct transcriptional genes and pathways contributing to non-target mediated hepatotoxicity in mice.
Toxicology and Applied Pharmacology | 2014
Meeghan O'Connor; Petra Koza-Taylor; Sarah N. Campion; Lauren M. Aleksunes; Xinsheng Gu; Ahmed Enayetallah; Michael P. Lawton; José E. Manautou
Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400mg/kg) and then challenged 48h later with 600mg APAP/kg. Livers were obtained 4 or 24h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430_2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection.
Toxicological Sciences | 2012
Kay A. Criswell; Jon C. Cook; Dennis C. Morse; Michael T. Lawton; Christopher Somps; Leslie Obert; Marc Roy; Sharon A. Sokolowski; Petra Koza-Taylor; Jennifer L. Colangelo; Kimberly A. Navetta; Joseph T. Brady; David G. Pegg; Zbigniew Wojcinski; Ramin Rahbari; Steven K. Duddy; Timothy Anderson
The preceding article identified key components of pregabalins mode of action on nongenotoxic hemangiosarcoma formation in mice, including increased serum bicarbonate leading to decreased respiratory rate, increased blood pH, increased venous oxygen saturation, increased vascular endothelial growth factor and basic fibroblast growth factor expression, increased hepatic vascular endothelial growth factor receptor 2 expression, and increased iron-laden macrophages. Increased platelet count and platelet activation were early, species-specific biomarkers in mice. Dysregulated erythropoiesis, macrophage activation, and elevations of tissue growth factors were consistent with the unified mode of action for nongenotoxic hemangiosarcoma recently proposed at an international hemangiosarcoma workshop (Cohen, S. M., Storer, R. D., Criswell, K. A., Doerrer, N. G., Dellarco, V. L., Pegg, D. G., Wojcinski, Z. W., Malarkey, D. E., Jacobs, A. C., Klaunig, J. E., et al. (2009). Hemangiosarcoma in rodents: Mode-of-action evaluation and human relevance. Toxicol. Sci. 111, 4-18). In this article, we present evidence that pregabalin induces hypoxia and increases endothelial cell (EC) proliferation in a species-specific manner. Dietary administration of pregabalin produced a significant 35% increase in an immunohistochemical stain for hypoxia (Hypoxyprobe) in livers from pregabalin-treated mice. Increased Hypoxyprobe staining was not observed in the liver, bone marrow, or spleen of rats, supporting the hypothesis that pregabalin produces local tissue hypoxia in a species-specific manner. Transcriptional analysis supports that rats, unlike mice, adapt to pregabalin-induced hypoxia. Using a dual-label method, increased EC proliferation was observed as early as 2 weeks in mouse liver and 12 weeks in bone marrow following pregabalin administration. These same assays showed decreased EC proliferation in hepatic ECs of rats, further supporting species specificity. Dietary supplementation with vitamin E, which is known to have antioxidant and antiangiogenic activity, inhibited pregabalin-induced increases in mouse hepatic EC proliferation, providing confirmatory evidence for the proposed mode of action and its species-specific response.
Toxicologic Pathology | 2011
Satoko Kakiuchi-Kiyota; Lora L. Arnold; Masanao Yokohira; Petra Koza-Taylor; Shugo Suzuki; Michelle L. Varney; Karen L. Pennington; Samuel M. Cohen
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists and PPARγ/α dual agonists are used in the treatment of type 2 diabetes mellitus and hyperlipidemias. In carcinogenicity studies, some of these agonists induced hemangiomas/hemangiosarcomas in mice, but not in rats. We hypothesized that increased endothelial cell (EC) proliferation may be involved in the mechanism of PPAR agonist–induced vascular tumors in mice. We previously showed that the sarcomagenic PPARγ agonist troglitazone (TG) increased EC proliferation in brown and white adipose tissue and liver in mice at sarcomagenic doses (400 and 800 mg/kg) after four weeks of treatment. In vitro, TG had a mitogenic effect on mouse microvascular mouse ECs by increasing cell proliferation and survival. The current studies showed that treatment of mouse ECs in vitro induced alterations in proliferation pathway gene expression, especially the expression of insulin-like growth factor-1, but had no effect on mouse oxidative stress pathways. In vivo, treatment with vitamin E did not inhibit TG-induced EC proliferation in liver and adipose tissue. In addition, no hypoxic effect was detected in adipose tissue of TG-treated mice; however, TG had a minor effect on hepatocellular hypoxia. These results provide additional evidence supporting a direct mitogenic effect in the mode of action of TG-induced hemangiosarcomas in mice.