Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leslie Saddlemyer is active.

Publication


Featured researches published by Leslie Saddlemyer.


Proceedings of the National Academy of Sciences of the United States of America | 2014

First light of the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Patrick Ingraham; Quinn Konopacky; Christian Marois; Marshall D. Perrin; Lisa A. Poyneer; Brian J. Bauman; Travis Barman; Adam Burrows; Andrew Cardwell; Jeffrey K. Chilcote; Robert J. De Rosa; Daren Dillon; René Doyon; Jennifer Dunn; Darren Erikson; Michael P. Fitzgerald; Donald Gavel; Stephen J. Goodsell; Markus Hartung; Pascale Hibon; Paul Kalas; James E. Larkin; Jérôme Maire; Franck Marchis; Mark S. Marley; James McBride; Max Millar-Blanchaer; Katie M. Morzinski

Bruce Macintosh a , James R. Graham , Patrick Ingraham b , Quinn Konopacky , Christian Marois , Marshall Perrin f , Lisa Poyneer a , Brian Bauman a , Travis Barman , Adam Burrows , Andrew Cardwell , Jeffrey Chilcote j , Robert J. De Rosa , Daren Dillon , Rene Doyon , Jennifer Dunn e , Darren Erikson e , Michael Fitzgerald j , Donald Gavel l , Stephen Goodsell i , Markus Hartung i , Pascale Hibon i , Paul G. Kalas c , James Larkin j , Jerome Maire d , Franck Marchis , Mark Marley , James McBride c , Max Millar-Blanchaer d , Katie Morzinski , Andew Norton l B. R. Oppenheimer , Dave Palmer a , Jennifer Patience k , Laurent Pueyo f , Fredrik Rantakyro i , Naru Sadakuni i , Leslie Saddlemyer e , Dmitry Savransky , Andrew Serio i , Remi Soummer f Anand Sivaramakrishnan f , q Inseok Song , Sandrine Thomas , J. Kent Wallace , Sloane Wiktorowicz l , and Schuyler Wolff vSignificance Direct detection—spatially resolving the light of a planet from the light of its parent star—is an important technique for characterizing exoplanets. It allows observations of giant exoplanets in locations like those in our solar system, inaccessible by other methods. The Gemini Planet Imager (GPI) is a new instrument for the Gemini South telescope. Designed and optimized only for high-contrast imaging, it incorporates advanced adaptive optics, diffraction control, a near-infrared spectrograph, and an imaging polarimeter. During first-light scientific observations in November 2013, GPI achieved contrast performance that is an order of magnitude better than conventional adaptive optics imagers. The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.


Science | 2015

Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Travis Barman; R. J. De Rosa; Quinn Konopacky; Mark S. Marley; Christian Marois; Eric L. Nielsen; Laurent Pueyo; Abhijith Rajan; Julien Rameau; Didier Saumon; Jason J. Wang; Jenny Patience; Mark Ammons; Pauline Arriaga; Étienne Artigau; Steven V. W. Beckwith; J. Brewster; Sebastian Bruzzone; Joanna Bulger; B. Burningham; Adam Burrows; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Rebekah I. Dawson; Ruobing Dong; René Doyon; Zachary H. Draper

An exoplanet extracted from the bright Direct imaging of Jupiter-like exoplanets around young stars provides a glimpse into how our solar system formed. The brightness of young stars requires the use of next-generation devices such as the Gemini Planet Imager (GPI). Using the GPI, Macintosh et al. discovered a Jupiter-like planet orbiting a young star, 51 Eridani (see the Perspective by Mawet). The planet, 51 Eri b, has a methane signature and is probably the smallest exoplanet that has been directly imaged. These findings open the door to understanding solar system origins and herald the dawn of a new era in next-generation planetary imaging. Science, this issue p. 64; see also p. 39 The Gemini Planet Imager detects a Jupiter-like exoplanet orbiting the young star 51 Eridani. [Also see Perspective by Mawet] Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10−6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.


Proceedings of SPIE | 2006

The Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; David Palmer; René Doyon; Donald Gavel; James E. Larkin; Ben R. Oppenheimer; Leslie Saddlemyer; J. Kent Wallace; Brian J. Bauman; Julia W. Evans; Darren Erikson; Katie M. Morzinski; D. W. Phillion; Lisa A. Poyneer; Anand Sivaramakrishnan; Rémi Soummer; Simon Thibault; Jean-Pierre Véran

The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10-7 to 10-8, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.


The Astrophysical Journal | 2015

β PICTORIS' INNER DISK in POLARIZED LIGHT and NEW ORBITAL PARAMETERS for β PICTORIS b

Maxwell A. Millar-Blanchaer; James R. Graham; Laurent Pueyo; Paul Kalas; Rebekah I. Dawson; Jason J. Wang; Marshall D. Perrin; Dae Sik Moon; Bruce A. Macintosh; S. Mark Ammons; Travis Barman; Andrew Cardwell; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Tara Cotten; Robert J. De Rosa; Zachary H. Draper; Jennifer Dunn; Gaspard Duchene; Thomas M. Esposito; Michael P. Fitzgerald; Katherine B. Follette; Stephen J. Goodsell; Alexandra Z. Greenbaum; Markus Hartung; Pascale Hibon; Sasha Hinkley; Patrick Ingraham; Rebecca Jensen-Clem

© 2015. The American Astronomical Society. All rights reserved. We present H-band observations of β Pic with the Gemini Planet Imagers (GPIs) polarimetry mode that reveal the debris disk between ∼0.″3 (6 AU) and ∼1.″7 (33 AU), while simultaneously detecting β Pic b. The polarized disk image was fit with a dust density model combined with a Henyey-Greenstein scattering phase function. The best-fit model indicates a disk inclined to the line of sight () with a position angle (PA) (slightly offset from the main outer disk, ), that extends from an inner disk radius of to well outside GPIs field of view. In addition, we present an updated orbit for β Pic b based on new astrometric measurements taken in GPIs spectroscopic mode spanning 14 months. The planet has a semimajor axis of , with an eccentricity The PA of the ascending node is offset from both the outer main disk and the inner disk seen in the GPI image. The orbital fit constrains the stellar mass of β Pic to Dynamical sculpting by β Pic b cannot easily account for the following three aspects of the inferred disk properties: (1) the modeled inner radius of the disk is farther out than expected if caused by β Pic b; (2) the mutual inclination of the inner disk and β Pic b is when it is expected to be closer to zero; and (3) the aspect ratio of the disk () is larger than expected from interactions with β Pic b or self-stirring by the disks parent bodies.


Astronomical Telescopes and Instrumentation | 2000

Progress on Altair: The Gemini North Adaptive Optics System

Glen Herriot; Simon L. Morris; Andre Anthony; Dennis Derdall; Dave Duncan; Jennifer Dunn; Angelic Ebbers; J. Murray Fletcher; Tim Hardy; Brian Leckie; A. Mirza; Christopher L. Morbey; M. Pfleger; Scott Roberts; Philip Shott; Malcolm Smith; Leslie Saddlemyer; Jerry Sebesta; Kei Szeto; Robert Wooff; W. Windels; Jean-Pierre Véran

The Gemini Adaptive Optics System, (Altair), under construction at the National Research Council of Canadas Herzberg Institute of Astrophysics is unique among AO systems. Altair is designed with its deformable mirror (DM) conjugate to high altitude. We summarize construction progress. We then describe Altair in more detail. Both the Wavefront sensor foreoptics and control system are unconventional, because the guide star footprint on an altitude-conjugated DM moves as the guide star position varies. During a typical nodding sequence, where the telescope moves 10 arcseconds between exposures, this footprint moves by half an actuator and/or WFS lenslet. The advantages of altitude conjugation include increased isoplanatic patch size, which improves sky coverage, and improved uniformity of the corrected field. Altitude conjugation also reduces focal anisoplanatism with laser beacons. Although the initial installation of Altair will use natural guide stars, it will be fully ready to use a laser guide star (LGS). The infrastructure of Gemini observatory provides a variety of wavefront sensors and nested control loops that together permit some unique design concepts for Altair.


Optical Telescopes of Today and Tomorrow | 1997

GMOS: the GEMINI Multiple Object Spectrographs

Roger L. Davies; Jeremy R. Allington-Smith; Peter Bettess; Edmund Chadwick; George N. Dodsworth; Roger Haynes; David Lee; Ian J. Lewis; John Webster; Eli Ettedgui-Atad; Steven M. Beard; Maureen A. Ellis; Phil R. Williams; Tim Bond; David Crampton; Timothy J. Davidge; J. Murray Fletcher; Brian Leckie; Christopher L. Morbey; Richard Murowinski; Scott C. Roberts; Leslie Saddlemyer; Jerry Sebesta; James R. Stilburn; Kei Szeto

The two Gemini multiple object spectrographs (GMOS) are being designed and built for use with the Gemini telescopes on Mauna Kea and Cerro Pachon starting in 1999 and 2000 respectively. They have four operating modes: imaging, long slit spectroscopy, aperture plate multiple object spectroscopy and area (or integral field) spectroscopy. The spectrograph uses refracting optics for both the collimator and camera and uses grating dispersion. The image quality delivered to the spectrograph is anticipated to be excellent and the design is driven by the need to retain this acuity over a large wavelength range and the full 5.5 arcminute field of view. The spectrograph optics are required to perform from 0.36 to 1.8 microns although it is likely that the northern and southern versions of GMOS will use coatings optimized for the red and blue respectively. A stringent flexure specification is imposed by the scientific requirement to measure velocities to high precision (1 - 2 km/s). Here we present an overview of the design concentrating on the optical and mechanical aspects.


Proceedings of SPIE | 2012

The Gemini Planet Imager: integration and status

Bruce A. Macintosh; Andre Anthony; Jennifer Atwood; Nicolas A. Barriga; Brian J. Bauman; Kris Caputa; Jeffery Chilcote; Daren Dillon; René Doyon; Jennifer Dunn; Donald Gavel; Ramon Galvez; Stephen J. Goodsell; James R. Graham; Markus Hartung; Joshua Isaacs; Dan Kerley; Quinn Konopacky; Kathleen Labrie; James E. Larkin; Jérôme Maire; Christian Marois; Max Millar-Blanchaer; Arturo Nunez; Ben R. Oppenheimer; David Palmer; John Pazder; Marshall D. Perrin; Lisa A. Poyneer; Carlos Quirez

The Gemini Planet Imager is a next-generation instrument for the direct detection and characterization of young warm exoplanets, designed to be an order of magnitude more sensitive than existing facilities. It combines a 1700-actuator adaptive optics system, an apodized-pupil Lyot coronagraph, a precision interferometric infrared wavefront sensor, and a integral field spectrograph. All hardware and software subsystems are now complete and undergoing integration and test at UC Santa Cruz. We will present test results on each subsystem and the results of end-to-end testing. In laboratory testing, GPI has achieved a raw contrast (without post-processing) of 10-6 5σ at 0.4”, and with multiwavelength speckle suppression, 2x10-7 at the same separation.


Proceedings of SPIE | 2014

SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope

Étienne Artigau; Driss Kouach; Jean-François Donati; René Doyon; X. Delfosse; Sébastien Baratchart; Marielle Lacombe; Claire Moutou; Patrick Rabou; L. Parès; Yoan Micheau; Simon Thibault; Vladimir Reshetov; Bruno Dubois; Olivier Hernandez; Philippe Vallee; Shiang-Yu Wang; François Dolon; F. Pepe; F. Bouchy; Nicolas Striebig; François Hénault; David Loop; Leslie Saddlemyer; Gregory Barrick; Tom Vermeulen; M. Dupieux; G. Hébrard; I. Boisse; Eder Martioli

SPIRou is a near-IR echelle spectropolarimeter and high-precision velocimeter under construction as a next- generation instrument for the Canada-France-Hawaii-Telescope. It is designed to cover a very wide simultaneous near-IR spectral range (0.98-2.35 μm) at a resolving power of 73.5K, providing unpolarized and polarized spectra of low-mass stars at a radial velocity (RV) precision of 1m/s. The main science goals of SPIRou are the detection of habitable super-Earths around low-mass stars and the study of stellar magnetism of star at the early stages of their formation. Following a successful final design review in Spring 2014, SPIRou is now under construction and is scheduled to see first light in late 2017. We present an overview of key aspects of SPIRou’s optical and mechanical design.


Proceedings of SPIE | 2014

The integral field spectrograph for the Gemini planet imager

James E. Larkin; Jeffrey K. Chilcote; Theodore Aliado; Brian J. Bauman; George Brims; John Canfield; Andrew Cardwell; Daren Dillon; René Doyon; Jennifer Dunn; Michael P. Fitzgerald; James R. Graham; Stephen J. Goodsell; Markus Hartung; Pascale Hibon; Patrick Ingraham; Christopher A. Johnson; Evan Kress; Quinn Konopacky; Bruce A. Macintosh; Kenneth G. Magnone; Jérôme Maire; Ian S. McLean; David Palmer; Marshall D. Perrin; Carlos Quiroz; Fredrik T. Rantakyrö; Naru Sadakuni; Leslie Saddlemyer; Andrew Serio

The Gemini Planet Imager (GPI) is a complex optical system designed to directly detect the self-emission of young planets within two arcseconds of their host stars. After suppressing the starlight with an advanced AO system and apodized coronagraph, the dominant residual contamination in the focal plane are speckles from the atmosphere and optical surfaces. Since speckles are diffractive in nature their positions in the field are strongly wavelength dependent, while an actual companion planet will remain at fixed separation. By comparing multiple images at different wavelengths taken simultaneously, we can freeze the speckle pattern and extract the planet light adding an order of magnitude of contrast. To achieve a bandpass of 20%, sufficient to perform speckle suppression, and to observe the entire two arcsecond field of view at diffraction limited sampling, we designed and built an integral field spectrograph with extremely low wavefront error and almost no chromatic aberration. The spectrograph is fully cryogenic and operates in the wavelength range 1 to 2.4 microns with five selectable filters. A prism is used to produce a spectral resolution of 45 in the primary detection band and maintain high throughput. Based on the OSIRIS spectrograph at Keck, we selected to use a lenslet-based spectrograph to achieve an rms wavefront error of approximately 25 nm. Over 36,000 spectra are taken simultaneously and reassembled into image cubes that have roughly 192x192 spatial elements and contain between 11 and 20 spectral channels. The primary dispersion prism can be replaced with a Wollaston prism for dual polarization measurements. The spectrograph also has a pupil-viewing mode for alignment and calibration.


Proceedings of SPIE | 2014

Gemini planet imager observational calibrations V: Astrometry and distortion

Quinn Konopacky; Sandrine Thomas; Bruce A. Macintosh; Daren Dillon; Naru Sadakuni; Jérôme Maire; Michael P. Fitzgerald; Sasha Hinkley; Paul Kalas; Thomas M. Esposito; Christian Marois; Patrick Ingraham; Franck Marchis; Marshall D. Perrin; James R. Graham; Jason J. Wang; Robert J. De Rosa; Katie M. Morzinski; Laurent Pueyo; Jeffrey K. Chilcote; James E. Larkin; Daniel C. Fabrycky; Stephen J. Goodsell; Ben R. Oppenheimer; Jenny Patience; Leslie Saddlemyer; Anand Sivaramakrishnan

We present the results of both laboratory and on sky astrometric characterization of the Gemini Planet Imager (GPI). This characterization includes measurement of the pixel scale* of the integral field spectrograph (IFS), the position of the detector with respect to north, and optical distortion. Two of these three quantities (pixel scale and distortion) were measured in the laboratory using two transparent grids of spots, one with a square pattern and the other with a random pattern. The pixel scale in the laboratory was also estimate using small movements of the artificial star unit (ASU) in the GPI adaptive optics system. On sky, the pixel scale and the north angle are determined using a number of known binary or multiple systems and Solar System objects, a subsample of which had concurrent measurements at Keck Observatory. Our current estimate of the GPI pixel scale is 14.14 ± 0.01 millarcseconds/pixel, and the north angle is -1.00 ± 0.03°. Distortion is shown to be small, with an average positional residual of 0.26 pixels over the field of view, and is corrected using a 5th order polynomial. We also present results from Monte Carlo simulations of the GPI Exoplanet Survey (GPIES) assuming GPI achieves ~1 milliarcsecond relative astrometric precision. We find that with this precision, we will be able to constrain the eccentricities of all detected planets, and possibly determine the underlying eccentricity distribution of widely separated Jovians.

Collaboration


Dive into the Leslie Saddlemyer's collaboration.

Top Co-Authors

Avatar

Jennifer Dunn

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Doyon

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian J. Bauman

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glen Herriot

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daren Dillon

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge