Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Letao Yang is active.

Publication


Featured researches published by Letao Yang.


Advanced Materials | 2014

Guiding Stem Cell Differentiation into Oligodendrocytes Using Graphene‐Nanofiber Hybrid Scaffolds

Shreyas Shah; Perry T. Yin; Thiers M. Uehara; Sy-Tsong Dean Chueng; Letao Yang; Ki-Bum Lee

Damage to the central nervous system (CNS) from degenerative diseases or traumatic injuries is particularly devastating due the limited regenerative capabilities of the CNS. Among the current approaches, stem cell-based regenerative medicine has shown great promise in achieving significant functional recovery by taking advantage of the self-renewal and differentiation capabilities of stem cells, which include pluripotent stem cells (PSCs), mesenchymal stem cells (MSCs) and neural stem cells (NSCs).[1] However, the low survival rate upon transplantation has been a longstanding barrier for scientists and clinicians to overcome.[2] To this end, numerous types of natural and synthetic biomaterial scaffolds have been developed, the two main classes being hydrogels and nanofibers, in an attempt to mimic the cellular microenvironment, support cellular growth and improve cellular viability.[3] Yet, designing scaffolds with defined properties to selectively guide stem cell differentiation towards a specific neural cell lineage is still an ongoing challenge.


ACS Nano | 2015

Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles

Jinping Lai; Birju P. Shah; Yixiao Zhang; Letao Yang; Ki-Bum Lee

Stimuli-responsive drug delivery vehicles have garnered immense interest in recent years due to unparalleled progress made in material science and nanomedicine. However, the development of stimuli-responsive devices with integrated real-time monitoring capabilities is still in its nascent stage because of the limitations of imaging modalities. In this paper, we describe the development of a polypeptide-wrapped mesoporous-silica-coated multicolor upconversion nanoparticle (UCNP@MSN) as an adenosine triphosphate (ATP)-responsive drug delivery system (DDS) for long-term tracking and real-time monitoring of drug release. Our UCNP@MSN with multiple emission peaks in UV-NIR wavelength range was functionalized with zinc-dipicolylamine analogue (TDPA-Zn(2+)) on its exterior surface and loaded with small-molecule drugs like chemotherapeutics in interior mesopores. The drugs remained entrapped within the UCNP-MSNs when the nanoparticles were wrapped with a compact branched polypeptide, poly(Asp-Lys)-b-Asp, because of multivalent interactions between Asp moieties present in the polypeptide and the TDPA-Zn(2+) complex present on the surface of UCNP-MSNs. This led to luminescence resonance energy transfer (LRET) from the UCNPs to the entrapped drugs, which typically have absorption in UV-visible range, ultimately resulting in quenching of UCNP emission in UV-visible range while retaining their strong NIR emission. Addition of ATP led to a competitive displacement of the surface bound polypeptide by ATP due to its higher affinity to TDPA-Zn(2+), which led to the release of the entrapped drugs and subsequent elimination of LRET. Monitoring of such ATP-triggered ratiometric changes in LRET allowed us to monitor the release of the entrapped drugs in real-time. Given these results, we envision that our proposed UCNP@MSN-polypeptide hybrid nanoparticle has great potential for stimuli-responsive drug delivery as well as for monitoring biochemical changes taking place in live cancer and stem cells.


ACS Nano | 2015

Controlling Differentiation of Adipose-Derived Stem Cells Using Combinatorial Graphene Hybrid-Pattern Arrays

Tae-Hyung Kim; Shreyas Shah; Letao Yang; Perry T. Yin; Md. Khaled Hossain; Brian Conley; Jeong-Woo Choi; Ki-Bum Lee

Control of stem cell fate by modulating biophysical cues (e.g., micropatterns, nanopatterns, elasticity and porosity of the substrates) has emerged as an attractive approach in stem cell-based research. Here, we report a method for fabricating combinatorial patterns of graphene oxide (GO) to effectively control the differentiation of human adipose-derived mesenchymal stem cells (hADMSCs). In particular, GO line patterns were highly effective for modulating the morphology of hADMSCs, resulting in enhanced differentiation of hADMSCs into osteoblasts. Moreover, by generating GO grid patterns, we demonstrate the highly efficient conversion of mesodermal stem cells to ectodermal neuronal cells (conversion efficiency = 30%), due to the ability of the grid patterns to mimic interconnected/elongated neuronal networks. This work provides an early demonstration of developing combinatorial graphene hybrid-pattern arrays for the control of stem cell differentiation, which can potentially lead to more effective stem cell-based treatment of incurable diseases/disorders.


Nano Convergence | 2016

Multidimensional nanomaterials for the control of stem cell fate

Sy-Tsong Dean Chueng; Letao Yang; Yixiao Zhang; Ki-Bum Lee

Current stem cell therapy suffers low efficiency in giving rise to differentiated cell lineages, which can replace the original damaged cells. Nanomaterials, on the other hand, provide unique physical size, surface chemistry, conductivity, and topographical microenvironment to regulate stem cell differentiation through multidimensional approaches to facilitate gene delivery, cell–cell, and cell–ECM interactions. In this review, nanomaterials are demonstrated to work both alone and synergistically to guide selective stem cell differentiation. From three different nanotechnology families, three approaches are shown: (1) soluble microenvironmental factors; (2) insoluble physical microenvironment; and (3) nano-topographical features. As regenerative medicine is heavily invested in effective stem cell therapy, this review is inspired to generate discussions in the potential clinical applications of multi-dimensional nanomaterials.


Theranostics | 2017

Advanced Gene Manipulation Methods for Stem Cell Theranostics

Christopher Rathnam; Sy-Tsong Dean Chueng; Letao Yang; Ki-Bum Lee

In the field of tissue engineering, autologous cell sources are ideal to prevent adverse immune responses; however, stable and reliable cell sources are limited. To acquire more reliable cell sources, the harvesting and differentiation of stem cells from patients is becoming more and more common. To this end, the need to control the fate of these stem cells before transplantation for therapeutic purposes is urgent. Since transcription factors orchestrate all of the gene activities inside of a cell, researchers have developed engineered and synthetic transcription factors to precisely control the fate of stem cells allowing for safer and more effective cell sources. Engineered transcription factors, mutant fusion proteins of naturally occurring proteins, comprise the three main domains of natural transcription factors including DNA binding domains, transcriptional activation domains, and a linker domain. Several key advancements of engineered zinc finger proteins, transcriptional activator-like effectors, and deficient cas9 proteins have revolutionized the field of engineered transcription factors allowing for precise control of gene regulation. Synthetic transcription factors are chemically made transcription factor mimics that use small molecule based moieties to replicate the main functions of natural transcription factors. These include hairpin polyamides, triple helix forming oligonucleotides, and nanoparticle-based methods. Synthetic transcription factors allow for non-viral delivery and greater spatiotemporal control of gene expression. The developments in engineered and synthetic transcription factors have lowered the risk of tumorigenicity and improved differentiation capability of stem cells, as well as facilitated many key discoveries in the fields of cancer and stem cell biology, thus providing a stepping stone to advance regenerative medicine in the clinic for cell replacement therapies.


Nature Communications | 2018

A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy

Letao Yang; Sy Tsong Dean Chueng; Ying Li; Misaal Patel; Christopher Rathnam; Gangotri Dey; Lu Wang; Li Cai; Ki-Bum Lee

Stem cell transplantation, as a promising treatment for central nervous system (CNS) diseases, has been hampered by crucial issues such as a low cell survival rate, incomplete differentiation, and limited neurite outgrowth in vivo. Addressing these hurdles, scientists have designed bioscaffolds that mimic the natural tissue microenvironment to deliver physical and soluble cues. However, several significant obstacles including burst release of drugs, insufficient cellular adhesion support, and slow scaffold degradation rate remain to be overcome before the full potential of bioscaffold–based stem-cell therapies can be realized. To this end, we developed a biodegradable nanoscaffold-based method for enhanced stem cell transplantation, differentiation, and drug delivery. These findings collectively support the therapeutic potential of our biodegradable hybrid inorganic (BHI) nanoscaffolds for advanced stem cell transplantation and neural tissue engineering.The promise of stem cell therapy for treating central nervous system disease is limited by low stem cell transplantation survival rates and poorly controlled cell fate. Here, the authors develop a biodegradable nanoscaffold for spinal cord injury that enhances transplantation and differentiation of neural stem cells and delivers drugs.


Advanced Materials | 2018

Nondestructive Real-Time Monitoring of Enhanced Stem Cell Differentiation Using a Graphene-Au Hybrid Nanoelectrode Array

Jin-Ho Lee; Hye Kyu Choi; Letao Yang; Sy-Tsong Dean Chueng; Jeong-Woo Choi; Ki-Bum Lee

Stem cells have attracted increasing research interest in the field of regenerative medicine because of their unique ability to differentiate into multiple cell lineages. However, controlling stem cell differentiation efficiently and improving the current destructive characterization methods for monitoring stem cell differentiation are the critical issues. To this end, multifunctional graphene-gold (Au) hybrid nanoelectrode arrays (NEAs) to: (i) investigate the effects of combinatorial physicochemical cues on stem cell differentiation, (ii) enhance stem cell differentiation efficiency through biophysical cues, and (iii) characterize stem cell differentiation in a nondestructive real-time manner are developed. Through the synergistic effects of physiochemical properties of graphene and biophysical cues from nanoarrays, the graphene-Au hybrid NEAs facilitate highly enhanced cell adhesion and spreading behaviors. In addition, by varying the dimensions of the graphene-Au hybrid NEAs, improved stem cell differentiation efficiency, resulting from the increased focal adhesion signal, is shown. Furthermore, graphene-Au hybrid NEAs are utilized to monitor osteogenic differentiation of stem cells electrochemically in a nondestructive real-time manner. Collectively, it is believed the unique multifunctional graphene-Au hybrid NEAs can significantly advance stem-cell-based biomedical applications.


Environmental Science: Processes & Impacts | 2016

Effects of a nanoceria fuel additive on the physicochemical properties of diesel exhaust particles.

Junfeng Zhang; Ki-Bum Lee; Linchen He; Joanna Seiffert; Prasad Subramaniam; Letao Yang; Shu Chen; Pierce Maguire; Gediminas Mainelis; Stephan Schwander; Teresa D. Tetley; Alexandra Porter; Mary P. Ryan; Milo S. P. Shaffer; Sheng Hu; Jicheng Gong; Kian Fan Chung

Nanoceria (i.e., CeO2 nanoparticles) fuel additives have been used in Europe and elsewhere to improve fuel efficiency. Previously we have shown that the use of a commercial fuel additive Envirox™ in a diesel-powered electricity generator reduced emissions of diesel exhaust particle (DEP) mass and other pollutants. However, such additives are currently not permitted for use in on-road vehicles in North America, largely due to limited data on the potential health impact. In this study, we characterized a variety of physicochemical properties of DEPs emitted from the same engine. Our methods include novel techniques such as Raman spectrometry for analyzing particle surface structure and an assay for DEP oxidative potential. Results show that with increasing Envirox™ concentrations in the fuel (0×, 0.1×, 1×, and 10× of manufacturer recommended 0.5 mL Envirox™ per liter fuel), DEP sizes decreased from 194.6 ± 20.1 to 116.3 ± 14.8 nm; the zeta potential changed from -28.4 mV to -22.65 mV; DEP carbon content decreased from 91.8% to 79.4%; cerium and nitrogen contents increased from 0.3% to 6.5% and 0.2% to 0.6%, respectively; the ratio of organic carbon (OC) to elemental carbon (EC) increased from 22.9% to 38.7%; and the ratio of the disordered carbon structure to the ordered carbon structure (graphitized carbon) in DEPs decreased. Compared to DEPs emitted from 0×, 0.1×, and 1× fuels, DEPs from the 10× fuel had a lower oxidative potential likely due to the increased ceria content because pure ceria nanoparticles exhibited the lowest oxidative potential compared to all the DEPs. Since the physicochemical parameters tested here are among the determinants of particle toxicity, our findings imply that adding ceria nanoparticles into diesel may alter the toxicity of DEPs. The findings from the present study, hence, can help future studies that will examine the impact of nanoceria additives on DEP toxicities.


Chemistry: A European Journal | 2016

Development of Photoactivated Fluorescent N-Hydroxyoxindoles and Their Application for Cell-Selective Imaging.

Jinping Lai; An Yu; Letao Yang; Yixiao Zhang; Birju P. Shah; Ki-Bum Lee

Photoactivatable fluorophores are essential tools for studying the dynamic molecular interactions within important biological systems with high spatiotemporal resolution. However, currently developed photoactivatable fluorophores based on conventional dyes have several limitations including reduced photoactivation efficiency, cytotoxicity, large molecular size, and complicated organic synthesis. To overcome these challenges, we herein report a class of photoactivatable fluorescent N-hydroxyoxindoles formed through the intramolecular photocyclization of substituted o-nitrophenyl ethanol (ONPE). These oxindole fluorophores afford excellent photoactivation efficiency with ultra-high fluorescence enhancement (up to 800-fold) and are small in size. Furthermore, the oxindole derivatives show exceptional biocompatibility by generating water as the only photolytic side product. Moreover, structure-activity relationship analysis clearly revealed the strong correlation between the fluorescent properties and the substituent groups, which can serve as a guideline for the further development of ONPE-based fluorescent probes with desired photophysical and biological properties. As a proof-of-concept, we demonstrated the capability of a new substituted ONPE that has an uncaging wavelength of 365-405 nm and an excitation/emission at 515 and 620 nm, for the selective imaging of a cancer cell line (Hela cells) and a human neural stem cell line (hNSCs).


Atmospheric Environment | 2017

Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure

Leonardo Calderon; Taewon Han; Catriona M. McGilvery; Letao Yang; Prasad Subramaniam; Ki-Bum Lee; Stephan Schwander; Teresa D. Tetley; Panos G. Georgopoulos; Mary Ryan; Alexandra E. Porter; Rachel Smith; Kian Fan Chung; Paul J. Lioy; Junfeng Zhang; Gediminas Mainelis

Collaboration


Dive into the Letao Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge