Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yixiao Zhang is active.

Publication


Featured researches published by Yixiao Zhang.


Nature | 2015

Structure of the eukaryotic MCM complex at 3.8 Å

Ningning Li; Yuanliang Zhai; Yixiao Zhang; Wanqiu Li; Maojun Yang; Jianlin Lei; Bik Kwoon Tye; Ning Gao

DNA replication in eukaryotes is strictly regulated by several mechanisms. A central step in this replication is the assembly of the heterohexameric minichromosome maintenance (MCM2–7) helicase complex at replication origins during G1 phase as an inactive double hexamer. Here, using cryo-electron microscopy, we report a near-atomic structure of the MCM2–7 double hexamer purified from yeast G1 chromatin. Our structure shows that two single hexamers, arranged in a tilted and twisted fashion through interdigitated amino-terminal domain interactions, form a kinked central channel. Four constricted rings consisting of conserved interior β-hairpins from the two single hexamers create a narrow passageway that tightly fits duplex DNA. This narrow passageway, reinforced by the offset of the two single hexamers at the double hexamer interface, is flanked by two pairs of gate-forming subunits, MCM2 and MCM5. These unusual features of the twisted and tilted single hexamers suggest a concerted mechanism for the melting of origin DNA that requires structural deformation of the intervening DNA.


PLOS Biology | 2014

Structural and Functional Insights into the Mode of Action of a Universally Conserved Obg GTPase

Boya Feng; Chandra Sekhar Mandava; Qiang Guo; Jie Wang; Wei Cao; Ningning Li; Yixiao Zhang; Yanqing Zhang; Zhixin Wang; Jiawei Wu; Suparna Sanyal; Jianlin Lei; Ning Gao

Kinetics and cryo-electronmicroscopy data provide insights into GTPase ObgE’s role as a ribosome anti-association factor that is modulated by nutrient availability, coupling growth control to ribosome biosynthesis and protein translation.


Nucleic Acids Research | 2013

Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit

Ningning Li; Yuling Chen; Qiang Guo; Yixiao Zhang; Yi Yuan; Chengying Ma; Haiteng Deng; Jianlin Lei; Ning Gao

Ribosome assembly is a process fundamental for all cellular activities. The efficiency and accuracy of the subunit assembly are tightly regulated and closely monitored. In the present work, we characterized, both compositionally and structurally, a set of in vivo 50S subunit precursors (45S), isolated from a mutant bacterial strain. Our qualitative mass spectrometry data indicate that L28, L16, L33, L36 and L35 are dramatically underrepresented in the 45S particles. This protein spectrum shows interesting similarity to many qualitatively analyzed 50S precursors from different genetic background, indicating the presence of global rate-limiting steps in the late-stage assembly of 50S subunit. Our structural data reveal two major intermediate states for the 45S particles. Consistently, both states severally lack those proteins, but they also differ in the stability of the functional centers of the 50S subunit, demonstrating that they are translationally inactive. Detailed analysis indicates that the orientation of H38 accounts for the global conformational differences in these intermediate structures, and suggests that the reorientation of H38 to its native position is rate-limiting during the late-stage assembly. Especially, H38 plays an essential role in stabilizing the central protuberance, through the interaction with the 5S rRNA, and the correctly orientated H38 is likely a prerequisite for further maturation of the 50S subunit.


Nature Structural & Molecular Biology | 2014

Structural basis for interaction of a cotranslational chaperone with the eukaryotic ribosome

Yixiao Zhang; Chengying Ma; Yi Yuan; Jing Zhu; Ningning Li; Chu Chen; Shan Wu; Li Yu; Jianlin Lei; Ning Gao

Cotranslational chaperones, ubiquitous in all living organisms, protect nascent polypeptides from aggregation and facilitate their de novo folding. Importantly, emerging data have also suggested that ribosome-associated cotranslational chaperones have active regulatory roles in modulating protein translation. By characterizing the structure of a type of eukaryotic cotranslational chaperone, the ribosome-associated complex (RAC) from Saccharomyces cerevisiae, we show that RAC cross-links two ribosomal subunits, through a single long α-helix, to limit the predominant intersubunit rotation required for peptide elongation. We further demonstrate that any changes in the continuity, length or rigidity of this middle α-helix impair RAC function in vivo. Our results suggest a new mechanism in which RAC directly regulates protein translation by mechanically coupling cotranslational folding with the peptide-elongation cycle, and they lay the foundation for further exploration of regulatory roles of RAC in translation control.


Biomaterials | 2002

Variation of nanomechanical properties of bone by gene mutation in the zebrafish.

Xueyan Wang; F.Z. Cui; Jianping Ge; Yixiao Zhang; C. Ma

Significant variations of nanomechanical properties and fracture morphology between gene-mutated liliput(dtc232) (lil/lil) zebrafish skeletal bone and wild-type bone have been observed. Nanoindentation measurement disclosed that lil/lil bone has 36% lower nanohardness and 32% lower elastic modulus. The standard deviations of hardness and elastic modulus of lil/lil bone were both much higher than those of wild-type bone. SEM morphology of fracture surfaces further revealed that in bones after gene mutation, formative microcracks make the performance reduction and the increasing of brittleness. What is more, the plywood-like structure of the normal bone does not exist in the lil/lil bone.


Nature Structural & Molecular Biology | 2015

HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions

Yanqing Zhang; Chandra Sekhar Mandava; Wei Cao; Xiaojing Li; Dejiu Zhang; Ningning Li; Yixiao Zhang; Xiaoxiao Zhang; Yan Qin; Kaixia Mi; Jianlin Lei; Suparna Sanyal; Ning Gao

Adverse cellular conditions often lead to nonproductive translational stalling and arrest of ribosomes on mRNAs. Here, we used fast kinetics and cryo-EM to characterize Escherichia coli HflX, a GTPase with unknown function. Our data reveal that HflX is a heat shock–induced ribosome-splitting factor capable of dissociating vacant as well as mRNA-associated ribosomes with deacylated tRNA in the peptidyl site. Structural data demonstrate that the N-terminal effector domain of HflX binds to the peptidyl transferase center in a strikingly similar manner as that of the class I release factors and induces dramatic conformational changes in central intersubunit bridges, thus promoting subunit dissociation. Accordingly, loss of HflX results in an increase in stalled ribosomes upon heat shock. These results suggest a primary role of HflX in rescuing translationally arrested ribosomes under stress conditions.


Nucleic Acids Research | 2014

Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly

Xiaoxiao Zhang; Kaige Yan; Yixiao Zhang; Ningning Li; Chengying Ma; Zhifei Li; Yanqing Zhang; Boya Feng; Jing Liu; Yadong Sun; Yanji Xu; Jianlin Lei; Ning Gao

Many ribosome-interacting GTPases, with proposed functions in ribosome biogenesis, are also implicated in the cellular regulatory coupling between ribosome assembly process and various growth control pathways. EngA is an essential GTPase in bacteria, and intriguingly, it contains two consecutive GTPase domains (GD), being one-of-a-kind among all known GTPases. EngA is required for the 50S subunit maturation. However, its molecular role remains elusive. Here, we present the structure of EngA bound to the 50S subunit. Our data show that EngA binds to the peptidyl transferase center (PTC) and induces dramatic conformational changes on the 50S subunit, which virtually returns the 50S subunit to a state similar to that of the late-stage 50S assembly intermediates. Very interestingly, our data show that the two GDs exhibit a pseudo-two-fold symmetry in the 50S-bound conformation. Our results indicate that EngA recognizes certain forms of the 50S assembly intermediates, and likely facilitates the conformational maturation of the PTC of the 23S rRNA in a direct manner. Furthermore, in a broad context, our data also suggest that EngA might be a sensor of the cellular GTP/GDP ratio, endowed with multiple conformational states, in response to fluctuations in cellular nucleotide pool, to facilitate and regulate ribosome assembly.


Protein & Cell | 2014

Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence.

Zhixiu Yang; Qiang Guo; Simon Goto; Yuling Chen; Ningning Li; Kaige Yan; Yixiao Zhang; Akira Muto; Haiteng Deng; Hyouta Himeno; Jianlin Lei; Ning Gao

The in vivo assembly of ribosomal subunits is a highly complex process, with a tight coordination between protein assembly and rRNA maturation events, such as folding and processing of rRNA precursors, as well as modifications of selected bases. In the cell, a large number of factors are required to ensure the efficiency and fidelity of subunit production. Here we characterize the immature 30S subunits accumulated in a factor-null Escherichia coli strain (∆rsgA∆rbfA). The immature 30S subunits isolated with varying salt concentrations in the buffer system show interesting differences on both protein composition and structure. Specifically, intermediates derived under the two contrasting salt conditions (high and low) likely reflect two distinctive assembly stages, the relatively early and late stages of the 3′ domain assembly, respectively. Detailed structural analysis demonstrates a mechanistic coupling between the maturation of the 5′ end of the 17S rRNA and the assembly of the 30S head domain, and attributes a unique role of S5 in coordinating these two events. Furthermore, our structural results likely reveal the location of the unprocessed terminal sequences of the 17S rRNA, and suggest that the maturation events of the 17S rRNA could be employed as quality control mechanisms on subunit production and protein translation.


Protein & Cell | 2016

Structural dynamics of the yeast Shwachman-Diamond syndrome protein (Sdo1) on the ribosome and its implication in the 60S subunit maturation

Chengying Ma; Kaige Yan; Dan Tan; Ningning Li; Yixiao Zhang; Yi Yuan; Zhifei Li; Meng-Qiu Dong; Jianlin Lei; Ning Gao

The human Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease caused by mutations in a highly conserved ribosome assembly factor SBDS. The functional role of SBDS is to cooperate with another assembly factor, elongation factor 1-like (Efl1), to promote the release of eukaryotic initiation factor 6 (eIF6) from the late-stage cytoplasmic 60S precursors. In the present work, we characterized, both biochemically and structurally, the interaction between the 60S subunit and SBDS protein (Sdo1p) from yeast. Our data show that Sdo1p interacts tightly with the mature 60S subunit in vitro through its domain I and II, and is capable of bridging two 60S subunits to form a stable 2:2 dimer. Structural analysis indicates that Sdo1p bind to the ribosomal P-site, in the proximity of uL16 and uL5, and with direct contact to H69 and H38. The dynamic nature of Sdo1p on the 60S subunit, together with its strategic binding position, suggests a surveillance role of Sdo1p in monitoring the conformational maturation of the ribosomal P-site. Altogether, our data support a conformational signal-relay cascade during late-stage 60S maturation, involving uL16, Sdo1p, and Efl1p, which interrogates the functional P-site to control the departure of the anti-association factor eIF6.


International Journal of Thermophysics | 2000

A Method of Determining the Thermophysical Properties and Calorific Intensity of the Organ or Tissue of a Living Body

Yixiao Zhang; Xin-Gang Liang; Zhiyong Wang; X. S. Ge

A new method was developed to determine simultaneously the thermal conductivity, thermal diffusivity, specific heat, and calorific intensity of the organ or tissue of a living body either in vivo or in vitro with a thin hot probe. By using the method, the thermophysical properties and calorific intensities of a human palm and in vivo liver and a kidney, heart, brain, and foreleg and hindleg muscles of an anesthetized canine were measured. It is concluded that there are no significant differences in the thermophysical properties of organ or tissue of a living body either in vivo or in vitro. The measured thermophysical properties are in good agreement with those reported in the literature.

Collaboration


Dive into the Yixiao Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge