Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leticia Maria Zanphorlin is active.

Publication


Featured researches published by Leticia Maria Zanphorlin.


Acta Crystallographica Section D-biological Crystallography | 2014

Structural basis for glucose tolerance in GH1 β-glucosidases

Priscila Oliveira de Giuseppe; Tatiana de Arruda Campos Brasil de Souza; Flavio Henrique Moreira Souza; Leticia Maria Zanphorlin; Carla Botelho Machado; Richard John Ward; João Atílio Jorge; Rosa Prazeres Melo Furriel; Mario Tyago Murakami

Product inhibition of β-glucosidases (BGs) by glucose is considered to be a limiting step in enzymatic technologies for plant-biomass saccharification. Remarkably, some β-glucosidases belonging to the GH1 family exhibit unusual properties, being tolerant to, or even stimulated by, high glucose concentrations. However, the structural basis for the glucose tolerance and stimulation of BGs is still elusive. To address this issue, the first crystal structure of a fungal β-glucosidase stimulated by glucose was solved in native and glucose-complexed forms, revealing that the shape and electrostatic properties of the entrance to the active site, including the +2 subsite, determine glucose tolerance. The aromatic Trp168 and the aliphatic Leu173 are conserved in glucose-tolerant GH1 enzymes and contribute to relieving enzyme inhibition by imposing constraints at the +2 subsite that limit the access of glucose to the -1 subsite. The GH1 family β-glucosidases are tenfold to 1000-fold more glucose tolerant than GH3 BGs, and comparative structural analysis shows a clear correlation between active-site accessibility and glucose tolerance. The active site of GH1 BGs is located in a deep and narrow cavity, which is in contrast to the shallow pocket in the GH3 family BGs. These findings shed light on the molecular basis for glucose tolerance and indicate that GH1 BGs are more suitable than GH3 BGs for biotechnological applications involving plant cell-wall saccharification.


Biochimica et Biophysica Acta | 2014

The effect of celastrol, a triterpene with antitumorigenic activity, on conformational and functional aspects of the human 90kDa heat shock protein Hsp90α, a chaperone implicated in the stabilization of the tumor phenotype.

Leticia Maria Zanphorlin; Fernanda Alves; Carlos H.I. Ramos

BACKGROUND Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrols action mode is still elusive. RESULTS In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. CONCLUSION Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. GENERAL SIGNIFICANCE To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.


Enzyme and Microbial Technology | 2015

Development of a chimeric hemicellulase to enhance the xylose production and thermotolerance.

José A. Diogo; Zaira B. Hoffmam; Leticia Maria Zanphorlin; Junio Cota; Carla Botelho Machado; Lúcia D. Wolf; Fabio M. Squina; André R.L. Damásio; Mario Tyago Murakami; Roberto Ruller

Xylan is an abundant plant cell wall polysaccharide and its reduction to xylose units for subsequent biotechnological applications requires a combination of distinct hemicellulases and auxiliary enzymes, mainly endo-xylanases and ß-xylosidases. In the present work, a bifunctional enzyme consisting of a GH11 endo-1,4-β-xylanase fused to a GH43 β-xylosidase, both from Bacillus subtilis, was designed taking into account the quaternary arrangement and accessibility to the substrate. The parental enzymes and the resulting chimera were successfully expressed in Escherichia coli, purified and characterized. Interestingly, the substrate cleavage rate was altered by the molecular fusion improving at least 3-fold the xylose production using specific substrates as beechwood xylan and hemicelluloses from pretreated biomass. Moreover, the chimeric enzyme showed higher thermotolerance with a positive shift of the optimum temperature from 35 to 50 °C for xylosidase activity. This improvement in the thermal stability was also observed by circular dichroism unfolding studies, which seems to be related to a gain of stability of the β-xylosidase domain. These results demonstrate the superior functional and stability properties of the chimeric enzyme in comparison to individual parental domains, suggesting the molecular fusion as a promising strategy for enhancing enzyme cocktails aiming at lignocellulose hydrolysis.


Protein Engineering Design & Selection | 2014

Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/ thermophilic enzyme

Roberto Ruller; Juliana Sanchez Alponti; Laila Aparecida Deliberto; Leticia Maria Zanphorlin; Carla Botelho Machado; Richard John Ward

As part of an ongoing directed evolution program, the catalytic performance of the Xylanase A from Bacillus subtilis (XynA), which presents temperature and pH optima of 50°C and 6.0, respectively, has been enhanced to create a highly thermostable and alkali-tolerant enzyme. A library of random XynA mutants generated by error-prone polymerase chain reaction was screened by halo formation on agar containing xylan at pH 8.0. Two mutants showing higher catalytic activity at elevated pH in relation to the wild-type XynA were selected, and pooled with a further 5 XynA variants selected by screening thermostable XynA obtained from a previous directed evolution study for activity at alkaline pH. This pool of variants was used as a template for a further round of error-prone polymerase chain reaction and DNase fragment shuffling, with screening at pH 12.0 at 55°C. Selected mutants were subjected to further DNase shuffling, and a final round of screening at pH 12.0 and 80°C. A XynA variant containing eight mutations was isolated (Q7H/G13R/S22P/S31Y/T44A/I51V/I107L/S179C) that presented a temperature optimum of 80°C, a 3-fold increase in the specific activity compared with the wild-type enzyme at pH 8.0, and a 50% loss of activity (t50) of 60 min at 80°C (wild type <2 min). This directed evolution strategy therefore allows the concomitant adaption of increased thermostability and alkali tolerance of an endo-xylanase.


Journal of Biological Chemistry | 2014

Molecular mechanisms associated with xylan degradation by xanthomonas plant pathogens.

Camila R. Santos; Zaira B. Hoffmam; Vanesa Peixoto de Matos Martins; Leticia Maria Zanphorlin; Leandro Henrique de Paula Assis; Rodrigo Vargas Honorato; Paulo Sergio Lopes de Oliveira; Roberto Ruller; Mario Tyago Murakami

Background: The xylanolytic activity is important for adaptation of Xanthomonas phytopathogen to the phyllosphere. Results: XynB is a very efficient endo-xylanase activated by calcium ion, and XynA is a dimeric exo-oligoxylanase. Conclusion: XynB degrades xylan, releasing xylooligosaccharides that are substrate for XynA. Significance: This work elucidated the structural basis for the function of the xylanolytic enzymes from Xanthomonas. Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses.


Journal of Biological Chemistry | 2016

Heat Shock Protein 90 kDa (Hsp90) Has a Second Functional Interaction Site with the Mitochondrial Import Receptor Tom70

Leticia Maria Zanphorlin; Tatiani B. Lima; Michael J. Wong; Tiago S. Balbuena; Conceição A.S.A. Minetti; David P. Remeta; Jason C. Young; Leandro R.S. Barbosa; Fabio C. Gozzo; Carlos H.I. Ramos

To accomplish its crucial role, mitochondria require proteins that are produced in the cytosol, delivered by cytosolic Hsp90, and translocated to its interior by the translocase outer membrane (TOM) complex. Hsp90 is a dimeric molecular chaperone and its function is modulated by its interaction with a large variety of co-chaperones expressed within the cell. An important family of co-chaperones is characterized by the presence of one TPR (tetratricopeptide repeat) domain, which binds to the C-terminal MEEVD motif of Hsp90. These include Tom70, an important component of the TOM complex. Despite a wealth of studies conducted on the relevance of Tom70·Hsp90 complex formation, there is a dearth of information regarding the exact molecular mode of interaction. To help fill this void, we have employed a combined experimental strategy consisting of cross-linking/mass spectrometry to investigate binding of the C-terminal Hsp90 domain to the cytosolic domain of Tom70. This approach has identified a novel region of contact between C-Hsp90 and Tom70, a finding that is confirmed by probing the corresponding peptides derived from cross-linking experiments via isothermal titration calorimetry and mitochondrial import assays. The data generated in this study are combined to input constraints for a molecular model of the Hsp90/Tom70 interaction, which has been validated by small angle x-ray scattering, hydrogen/deuterium exchange, and mass spectrometry. The resultant model suggests that only one of the MEEVD motifs within dimeric Hsp90 contacts Tom70. Collectively, our findings provide significant insight on the mechanisms by which preproteins interact with Hsp90 and are translocated via Tom70 to the mitochondria.


Journal of Biological Chemistry | 2016

A novel carbohydrate-binding module from sugar cane soil metagenome featuring unique structural and carbohydrate affinity properties

Bruna Medeia Campos; Marcelo V. Liberato; Thabata M. Alvarez; Leticia Maria Zanphorlin; Gabriela Cristina Ematsu; Hernane Barud; Igor Polikarpov; Roberto Ruller; Harry J. Gilbert; Ana Carolina de Mattos Zeri; Fabio M. Squina

Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked β1,3-β1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical β-sandwich fold comprising two β-sheets. The planar ligand binding site, observed in a parallel orientation with the β-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs.


Oncotarget | 2018

Resveratrol prevents p53 aggregation in vitro and in breast cancer cells

Danielly Cristiny Ferraz da Costa; Nathali Campos; Ronimara A. Santos; Francisca Hildemagna Guedes-da-Silva; Mafalda Maria D.C. Martins-Dinis; Leticia Maria Zanphorlin; Carlos Ramos; Luciana P. Rangel; Jerson L. Silva

One potential target for cancer therapeutics is the tumor suppressor p53, which is mutated in more than 50% of malignant tumors. Loss of function (LoF), dominant negative (DN) and gain of function (GoF) mutations in p53 are associated with amyloid aggregation. We tested the potential of resveratrol, a naturally occurring polyphenol, to interact and prevent the aggregation of wild-type and mutant p53 in vitro using fluorescence spectroscopy techniques and in human breast cancer cells (MDA-MB-231, HCC-70 and MCF-7) using immunofluorescence co-localization assays. Based on our data, an interaction occurs between resveratrol and the wild-type p53 core domain (p53C). In addition, resveratrol and its derivatives pterostilbene and piceatannol inhibit mutant p53C aggregation in vitro. Additionally, resveratrol reduces mutant p53 protein aggregation in MDA-MB-231 and HCC-70 cells but not in the wild-type p53 cell line MCF-7. To verify the effects of resveratrol on tumorigenicity, cell proliferation and cell migration assays were performed using MDA-MB-231 cells. Resveratrol significantly reduced the proliferative and migratory capabilities of these cells. Our study provides evidence that resveratrol directly modulates p53, enhancing our understanding of the mechanisms involved in p53 aggregation and its potential as a therapeutic strategy for cancer treatment.


Journal of Proteomics | 2018

Revealing the interaction mode of the highly flexible Sorghum bicolor Hsp70/Hsp90 organizing protein (Hop): A conserved carboxylate clamp confers high affinity binding to Hsp90

Regina Adão; Leticia Maria Zanphorlin; Tatiani B. Lima; Dev Sriranganadane; Käthe M. Dahlström; Glaucia M.S. Pinheiro; Fabio C. Gozzo; Leandro R.S. Barbosa; Carlos H.I. Ramos

Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies. Therefore, human and yeast homologous have been better studied and information on plant homologous is still limited, even though plants are continuously exposed to environmental stress. Particularly important is the study of crops that are relevant for agriculture, such as Sorghum bicolor, a C4 grass that is among the five most important cereals and is considered as a bioenergy feedstock. To increase the knowledge on plant chaperones, the hop putative gene for Sorghum bicolor was cloned and the biophysical and structural characterization of the protein was done by cross-linking coupled to mass spectroscopy, small angle X-ray scattering and structural modeling. Additionally, the binding to a peptide EEVD motif, which is present in both Hsp70 and Hsp90, was studied by isothermal titration calorimetry and hydrogen/deuterium exchange and the interaction pattern structurally modeled. The results indicate SbHop as a highly flexible, mainly alpha-helical monomer consisting of nine tetratricopeptide repeat domains, of which one confers high affinity binding to Hsp90 through a conserved carboxylate clamp. Moreover, the present insights into the conserved interactions formed between Hop and Hsp90 can help to design strategies for potential therapeutic approaches for the diseases in which Hop has been implicated.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2015

Molecular cloning, overexpression, purification and crystallographic analysis of a GH43 β-xylosidase from Bacillus licheniformis

José Alberto Diogo; Leticia Maria Zanphorlin; Hélia Harumi Sato; Mario Tyago Murakami; Roberto Ruller

β-Xylosidases (EC 3.2.1.37) catalyze the hydrolysis of short xylooligosaccharides into xylose, which is an essential step in the complete depolymerization of xylan, the major hemicellulosic polysaccharide of plant cell walls, and has great biotechnological relevance for the production of lignocellulose-based biofuels and the paper industry. In this study, a GH43 β-xylosidase identified from the bacterium Bacillus licheniformis (BlXylA) was cloned into the the pET-28a bacterial expression vector, recombinantly overexpressed in Escherichia coli BL21(DE3) cells and purified to homogeneity by metal-affinity and size-exclusion chromatography. The protein was crystallized in the presence of the organic solvent 2-methyl-2,4-pentanediol and a single crystal diffracted to 2.49 Å resolution. The X-ray diffraction data were indexed in the monoclinic space group C2, with unit-cell parameters a = 152.82, b = 41.9, c = 71.79 Å, β = 91.7°. Structural characterization of this enzyme will contribute to a better understanding of the structural requirements for xylooligosaccharide specificity within the GH43 family.

Collaboration


Dive into the Leticia Maria Zanphorlin's collaboration.

Top Co-Authors

Avatar

Roberto Ruller

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Carlos H.I. Ramos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Camila R. Santos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio C. Gozzo

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Fabio M. Squina

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Hélia Harumi Sato

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Jerson L. Silva

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge