Letícia Prado Oliveira
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Letícia Prado Oliveira.
Toxicology | 2013
Letícia Prado Oliveira; Cristiano Pedrozo Vieira; Flávia Da Ré Guerra; Marcos dos Santos de Almeida; Edson Rosa Pimentel
Statins have been widely prescribed as lipid-lowering drugs and are associated with tendon rupture. Therefore, this study aimed to evaluate the possible biochemical changes in the Achilles tendon of rats after chronic treatment with statins. Dosages of statins were calculated using allometric scaling with reference to the 80mg/day and 20mg/day, doses recommended for humans. The rats were divided into the following groups: treated with simvastatin (S-20 and S-80), treated with atorvastatin (A-20 and A-80), and the control group that received no treatment (C). Measurements of low-density lipoprotein (LDL) in the plasma were performed. The levels of non-collagenous proteins, glycosaminoglycans (GAGs) and hydroxyproline were quantified. Western blotting for collagen I was performed, and the presence of metalloproteinases (MMPs)-2 and -9 was investigated through zymography. The concentration of non-collagenous proteins in S-20 was less than the C group. There was a significant increase in pro-MMP-2 activity in A-80 group and in active MMP-2 in S-20 group compared to the C group. A significant increase in latent MMP-9 activity was observed in both the A-80 and S-20 groups when compared to C group. In the A-20 group, there was a lower amount of collagen I in relation to C group. In addition, a higher concentration of hydroxyproline was found in the S-20 group than the C group. The analysis of GAGs showed a significant increase in the A-20 group when compared to C group. The treatment induced remarkable alterations in the Achilles tendon and the response of the tissue seems to depend of the used statin dosage. The presence of MMP-2 and MMP-9 is evidence of the degradation and remodeling processes in the extracellular matrix of the tendons. Our results show that statins induce imbalance of extracellular matrix components and possibly induce microdamage in tendons.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2015
Cristiano Pedrozo Vieira; Letícia Prado Oliveira; Flávia Da Ré Guerra; Marcos dos Santos de Almeida; Maria Cristina Cintra Gomes Marcondes; Edson Rosa Pimentel
Tendinopathy of the Achilles tendon is a clinical problem that motivates the scientific community to search for treatments that assist in restoring its functional properties. Glycine has broad biological effects, acting as a modulator of the inflammatory cascade, and is the predominant amino acid in collagen. A 5% glycine diet provided beneficial effects against toxicity and inflammation since glycine may restructure the collagen molecules faster due to its broad anti‐inflammatory effects. The purpose was analyze the effects of a 5% glycine diet in rats as a treatment for the inflammatory process. The experimental groups were as follows: C (control group), G1 and G3 (inflammatory group), and G2 and G4 (glycine + inflammatory group). G1 and G2 were euthanized 8 days following injury, and G3 and G4 were euthanized 22 days following injury. The concentrations of hydroxyproline, non‐collagenous proteins, and glycosaminoglycans, as well as the activity of MMP‐2 and ‐9 were analyzed. Biomechanical and morphological tests were employed. Higher concentrations of hydroxyproline and glycosaminoglycans were found in G4 and an increased activity of MMP‐2 was found in G2. Higher birefringence was noted in group G2. The biomechanical results indicated that the tendon was more resistant to loading to rupture upon treatment with a glycine diet in group G4. Glycine induced the synthesis of important components of the tendon. A rapid remodeling was noted when compared with the inflamed‐only groups. These data suggest that glycine may be a beneficial supplement for individuals with inflammation of the Achilles tendon. Anat Rec, 298:538–545, 2015.
Acupuncture in Medicine | 2014
Marcos dos Santos de Almeida; Flávia Da Ré Guerra; Letícia Prado Oliveira; Cristiano Pedrozo Vieira; Edson Rosa Pimentel
A previous study demonstrated that acupuncture increases the synthesis and reorganisation of collagen molecules in rat tendons after injury. Clinical studies have shown that acupuncture improves pain and functional activity in patients with tendinopathy. However, the molecular mechanisms underlying these effects are unknown. Recent studies have shown that acupuncture can modulate both anti-inflammatory (AI) and mechanotransduction (MT) molecular pathways. Moreover, the modulation of these pathways can increase type I collagen synthesis, which is the main factor that influences tendon biomechanical properties. Our hypothesis is that acupuncture increases synthesis and subsequent reorganisation of type I collagen during tendon healing by concomitant modulation of the Toll-like receptor-nuclear factor-κB AI pathway, the mitogen-activated protein kinases pathway and the Rho/Rac-F-actin MT pathway. Increased collagen synthesis and reorganisation requires that at least one acupoint is anatomically connected with the site of the injury because of the local tenoblast MT mechanism. Confirmation of this hypothesis will increase the knowledge of acupuncture modulation of the previously mentioned molecular pathways, and such confirmation may also help to establish the relationships between the different types of acupuncture needle stimulation and the influence of acupuncture stimuli on pathway activity levels. In addition, the downstream therapeutic effects of acupuncture therapy may be established. This hypothesis can be verified in a rat tendon healing model, and subsequent clinical protocols for tendon healing can be developed and evaluated as standalone therapies or as a component of a combination therapy.
Acupuncture in Medicine | 2015
Marcos dos Santos de Almeida; Karine Moura de Freitas; Letícia Prado Oliveira; Cristiano Pedrozo Vieira; Flávia Da Ré Guerra; Mary Anne Heidi Dolder; Edson Rosa Pimentel
Background Our previous study showed that electroacupuncture (EA) increases the concentration and reorganisation of collagen in a rat model of tendon healing. However, the ultrastructure of collagen fibrils after acupuncture is unknown. Objectives To assess the effect of acupuncture protocols on the ultrastructure of collagen fibrils during tendon healing. Methods Sixty-four rats were divided into the following groups: non-tenotomised (normal group), tenotomised (teno group), tenotomised and subjected to manual acupuncture at ST36 (ST36 group), BL57 (BL57 group) and ST36+BL57 (SB group) and EA at ST36+BL57 (EA group). The mass-average diameter (MAD) and the reorganisation of collagen fibril diameters were determined during the three phases of tendon healing (at 7, 14 and 21 days). Results The MAD increased during the three phases of healing in the SB group. In the EA group, MAD increased initially but was reduced at day 21. The reorganisation of collagen fibrils was improved in the EA and SB groups at days 14 and 21, respectively. EA at day 21 appeared to reduce the reorganisation. Conclusions These results indicate that the use of EA up to day 14 and manual acupuncture at ST36+BL57 up to day 21 improve the ultrastructure of collagen fibrils, indicating strengthening of the tendon structure. These data suggest a potential role for acupuncture in rehabilitation protocols.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2013
Cristiano Pedrozo Vieira; Andrea Aparecida de Aro; Flávia Da Ré Guerra; Letícia Prado Oliveira; Marcos dos Santos de Almeida; Edson Rosa Pimentel
Tendinopathy is a pathology found mainly in the rotator cuff, patellar, Achilles and flexor tendons. Tendinopathy is a significant impediment to performance in athletes and in workers in the labor market. Some studies have indicated that inflammation in adjacent tissues may affect the rotator cuff and Achilles tendon. In this study alterations were verified in the extracellular matrix (ECM) of the deep digital flexor tendon after two periods (12 and 24 hr) of induction inflammation in rat paw. Wistar rats were divided into three groups: those that received injection of 1% carrageenan; those that received 0.9% NaCl; and those that received no application. The tendon was divided into distal (d), proximal (p), and intermediate (i) regions. Biochemical analyses were performed and included non‐collagenous proteins (NCP), glycosaminoglycans (GAGs), hydroxyproline (HoPro) and metalloproteinases 2 and 9. Tissue sections were stained with toluidine blue, hematoxylin‐eosin, and Ponceau SS and observed under polarization microscopy. Remarkable results were detected that included the presence of MMP‐9, degradation of NCP and GAG and the presence of cellular infiltrate closer to digits in d region. The different concentrations of HoPro, as well as alterations in the organization of the collagen fibers showed the collagenous matrix undergoing some alterations. The results indicated that the induced inflammation in rat paw exhibited characteristics similar to the typical acute inflammatory process observed in tendons. Anat Rec, 2013.
Acta Ortopedica Brasileira | 2012
Cristiano Pedrozo Vieira; Flávia Da Ré Guerra; Letícia Prado Oliveira; Marcos dos Santos de Almeida; Edson Rosa Pimentel
Objective To analyze the characteristics of the Achilles tendon of rats after induction of localized inflammation in the rat paw. Methods In our study three groups were used: inflamed group with carrageenan in rat paw (G1); saline group (G2) and control group (G3). After 4 hours the animals were euthanized and the Achilles tendon removed. Results No significant differences were observed in the analysis of non-collagenous proteins, glycosaminoglycans and hydroxyproline in the groups but a tendency of reduction was verified in G1. As regards the organization of collagen molecules, no differences were observed between groups. With respect to MMPs activity, a stronger presence of the active isoform of MMP-2 in G1 was observed, suggesting that the remodeling was occurring. Conclusion Thus, we conclude that the inflammatory process in rat paw may affect the remodeling of tendons located near the inflamed site. Level of Evidence I, Prognostic Studies - Investigating the Effect of a Patient Characteristic on the Outcome of Disease
Acupuncture in Medicine | 2016
Marcos dos Santos Almeida; Letícia Prado Oliveira; Cristiano Pedrozo Vieira; Flávia Da Ré Guerra; Edson Rosa Pimentel
Background Birefringence is an optical anisotropy that is investigated by polarisation microscopy, and has been valuable for the study of the oriented organisation of collagen fibres in tendons. However, the application of this technology to evaluate the effect of different acupuncture points during tendon healing has not yet been described. Objectives To evaluate the concentration of non-collagenous proteins (NCP) and birefringence in rat calcaneal tendons following injury during the three different phases of healing: inflammatory (7th day), proliferative (14th day), and remodelling (21st day). Methods Tendons of 120 Wistar rats were tenotomised and left untreated (teno group, n=24), treated with manual acupuncture at ST36 (ST36 group, n=24), BL57 (BL57 group, n=24) or ST36+BL57 (SB group, n=24), or treated with electroacupuncture at ST36+BL57 (EA group, n=24). Tendon samples were collected at 7, 14 and 21 days after injury (n=8 per group). NCP concentrations were measured using the Bradford method (n=4 each) and birefringence was examined using polarisation microscopy and image analysis (n=4 each). Comparison was also made with healthy (non-tenotomised) tendons in a subgroup of rats (n=4 each). Results Manual acupuncture at ST36 and BL57 increased molecular organisation of collagen fibres on day 14 and 21 after injury. Isolated use of BL57 and ST36 also increased collagen fibre organisation when examined on day 14 and 21, respectively. No significant increase in NCP concentration was observed in any of the treated tenotomised groups. Conclusions Acupuncture, through putative anti-inflammatory and mechanotransductor effects, may have a role in strengthening tendons and increasing resistance to re-rupture.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2016
Cristiano Pedrozo Vieira; Letícia Prado Oliveira; Flávia Da Ré Guerra; Maria Cristina Cintra Gomes Marcondes; Edson Rosa Pimentel
The myotendinous junction (MTJ) is the weakest element in the muscle‐tendon unit of the heel, and thus the most susceptible to injuries. The scarcity of adequate treatments means that tendinitis is a major concern to athletes and other groups who depend on their physical fitness, although green tea and glycine have both been shown to have beneficial effects on the inflammation. The present study investigated the remodeling effects of green tea and glycine in the MTJ of rats with tendinitis. For this, male Wistar rats were divided into five groups: animals without tendinitis and animals with tendinitis; animals with tendinitis supplied with green tea; animals with tendinitis supplied with a glycine diet; animals with tendinitis supplied with a green tea and glycine diet. Tendinitis was induced and the treatment with green tea (700 mg/kg/day) and a 5% glycine diet lasted 7 days. The treatments regulated the activity of metalloproteinases (MMP)‐2, ‐8, and ‐9, and induced the synthesis of type I collagen, glycosaminoglycans, and non‐collagenous proteins. Changes were also noted in the compaction of the collagen molecules and the amount of tenocytes. When combined, green tea and glycine modulated the inflammatory process and induced the synthesis of the elements involved in the post‐lesion recovery of the tissue. The data from the MTJ were different when compared with results already published using the whole Achilles tendon. These data indicate that each region of the inflamed tendon can exhibit different responses during the treatment and therefore, modify its extracellular matrix components to facilitate recovery and repair. Anat Rec, 299:918–928, 2016.
Life Sciences | 2018
Petrus Pires Marques; Cristiano Pedrozo Vieira; Letícia Prado Oliveira; Edson Rosa Pimentel; Flávia Da Ré Guerra
Aims: The primary goal was to assess the effects of chronic sildenafil treatment over the Achilles tendons in rats. Main methods: Animals were divided into two groups, control and sildenafil administration (n=5). After 60days, the tendons were subject to biochemical and image analysis to compare tendons between the groups: collagen I and decorin content, polarisation microscopy and birefringence analysis, and tissue zymography. Key findings: The animals exposed to sildenafil presented a much less organised tendon matrix, with reduced collagen I and non‐collagenous protein content and a much higher decorin content. Significance: The results observed in the animals can be characterised as tendinopathy, a condition not yet described as a sildenafil side effect.
Tissue & Cell | 2017
Flávia Da Ré Guerra; Cristiano Pedrozo Vieira; Petrus Pires Marques; Letícia Prado Oliveira; Edson Rosa Pimentel
In tendon lesions, inflammation indicates the beginning of tissue repair and influences cell proliferation and the remodeling of the extracellular matrix (ECM). Low level laser (LLL) therapy has been an important method to induce tissue repair, and several studies have sought to better understand the therapeutic possibilities of this modality. This study analyzed the effect of LLL on the ECM of rat tendons during the early phase of the inflammatory process. Wistar rats received an intratendinous application of carrageenan adjacent to the osteotendinous region in the right paw. The animals were divided into the following groups: G1-intact, G2-animals with no treatment after the inflammation induction, G3-animals treated with LLL 1 and 3h after induction of inflammation (4J/cm2 continuous). After 4h of application, the animals of the two groups were euthanized with isoflurane overdose. Our results demonstrate that LLL therapy can promote decrease in non-collagenous protein and glycosaminoglycans content, as well as an increase in metalloproteinases -9, which proved, for the first time, that LLL therapy promotes alterations in the inflamed tendons even when analyzed only four hours after this process occur and could be a useful tool to improve the balance in inflamed tissues.