Lev Levanov
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lev Levanov.
The New England Journal of Medicine | 2016
Rita Driggers; Cheng-Ying Ho; Essi M. Korhonen; Anne J. Jääskeläinen; Teemu Smura; Avi Z. Rosenberg; D. Ashley Hill; Roberta L. DeBiasi; Gilbert Vezina; Julia Timofeev; Fausto J. Rodriguez; Lev Levanov; Jennifer Razak; Preetha Iyengar; Andrew K. Hennenfent; Richard O’Kennedy; Robert S. Lanciotti; Adré J. du Plessis; Olli Vapalahti
The current outbreak of Zika virus (ZIKV) infection has been associated with an apparent increased risk of congenital microcephaly. We describe a case of a pregnant woman and her fetus infected with ZIKV during the 11th gestational week. The fetal head circumference decreased from the 47th percentile to the 24th percentile between 16 and 20 weeks of gestation. ZIKV RNA was identified in maternal serum at 16 and 21 weeks of gestation. At 19 and 20 weeks of gestation, substantial brain abnormalities were detected on ultrasonography and magnetic resonance imaging (MRI) without the presence of microcephaly or intracranial calcifications. On postmortem analysis of the fetal brain, diffuse cerebral cortical thinning, high ZIKV RNA loads, and viral particles were detected, and ZIKV was subsequently isolated.
Journal of Virological Methods | 2012
Jussi Sane; Satu Kurkela; Lev Levanov; Simo Nikkari; Antti Vaheri; Olli Vapalahti
Sindbis virus (SINV) is an arthropod-borne alphavirus found widely in Eurasia, Africa and Oceania. Clinical SINV infection, characterized by rash and arthritis, is reported primarily in Northern Europe. The laboratory diagnosis of SINV infection is based currently on serology. A one-step TaqMan(®) real-time RT-PCR assay was developed for the detection of SINV and evaluated its clinical performance with acute-phase serum samples. The specificity and sensitivity of the real-time PCR assay were assessed using cell cultured Finnish SINV strains. The applicability of the assay for diagnostic use was evaluated using 58 serum samples from patients infected with SINV. The real-time RT-PCR assay was specific and sensitive for the detection of SINV in cell culture supernatants with a 95% detection limit of 9 genome copies/reaction determined by probit analysis. However, in the assay only 7/58 (12%) of serum samples were positive of which two were also positive by conventional nested PCR assay and none by virus isolation. This novel assay is specific and sensitive for detection of SINV and can be used for example for screening SINV in wildlife. However, molecular diagnostic techniques using serum samples seem to be of limited value for the diagnosis of human SINV infection due to the short and low viraemia of infection with SINV.
Infection, Genetics and Evolution | 2014
Niina Putkuri; Satu Kurkela; Lev Levanov; Eili Huhtamo; Antti Vaheri; Tarja Sironen; Olli Vapalahti
The mosquito-borne California encephalitis serogroup viruses of the genus Orthobunyavirus (family Bunyaviridae) include several causative agents of encephalitis in humans. Until recently, Inkoo virus (INKV) was the only orthobunyavirus isolated in Finland, showing high seroprevalence in the population. In this study, we recovered five orthobunyavirus isolates from mosquitoes collected in eastern Finland in the early autumns of 2007 and 2008 by inoculation of Vero cells. The isolates were determined by S, M and L segment sequences to represent the California encephalitis virus species but distinct from INKV (68% polyprotein amino acid (aa) identity). In genetic analyses, isolates clustered together with a number of westernmost Chatanga virus isolates (98% polyprotein aa identity) reported from Russia, forming a distinct phylogroup. However, the sequence homology of this phylogroup to the majority of Chatanga isolates, comprising three different geographically clustered phylogroups, was considerably lower (89-92% polyprotein aa identity). The five new isolates were designated as Möhkö isolates of Chatanga virus, according to the village of origin. The isolates were closely related to Snowshoe hare virus (SSHV) and La Crosse virus (LACV) with an aa identity of 87% and 82% within the M segment polyprotein, respectively. The genetic relatedness of Möhkö isolates to a number of human pathogenic orthobunyaviruses warrants further investigation on their potential disease associations and further serological analysis is needed to compare them to other Chatanga virus isolates and SSHV to determine their true antigenic relation.
Emerging Infectious Diseases | 2016
Niina Putkuri; Anu Kantele; Lev Levanov; Ilkka Kivistö; Markus Brummer-Korvenkontio; Antti Vaheri; Olli Vapalahti
Most cases appeared to be subclinical, but a few patients, usually children, required hospitalization.
Journal of Clinical Microbiology | 2014
Lev Levanov; Andrey Matveev; Sathyamangalam Swaminathan; Anu Jääskeläinen-Hakala; Olli Vapalahti
ABSTRACT The precursor membrane envelope (prME) proteins of all three tick-borne encephalitis virus (TBEV) subtypes were produced based on expression from Semliki Forest virus (SFV) replicons transcribed from recombinant plasmids. Vero E6 cells transfected by these plasmids showed specific reactivities in immunofluorescence and immunoblot assays by monoclonal antibodies against European and Far-Eastern subtype strains of TBEV, indicating proper folding of the expressed glycoproteins. The prME glycoproteins were secreted into the cell culture supernatant, forming TBEV subviral particles of 20 to 30 nm in diameter. IgM μ-capture and IgG monoclonal antibody (MAb)-capture enzyme immunoassays (EIAs) were developed based on prME Karelia-94 (Siberian subtype) particles. Altogether, 140 human serum samples were tested using these assays, and the results were compared to those obtained with a commercial IgM EIA, an in-house μ-capture IgM assay based on baculovirus-expressed antigen, a commercial IgG EIA, and a hemagglutination inhibition test. Compared to reference enzyme-linked immunosorbent assays (ELISAs), the sensitivities of the generated μ-capture IgM SFV-prME and IgG MAb-capture SFV-prME EIAs were 97.4 to 100% and 98.7%, respectively, and the specificities of the two assays were 100%. IgM and IgG immunofluorescence assays (IFAs) were created based on Vero E6 cells transfected with the recombinant plasmid carrying the TBEV Karelia-94 prME glycoproteins. The IgM IFA was 100% concordant with the μ-capture IgM bac-prME ELISA. The IgG IFA sensitivity and specificity were 98.7% and 100%, respectively, compared to those of the commercial ELISA. In conclusion, the tests developed based on SFV replicon-driven expression of TBEV glycoproteins provide safe and robust alternatives for conducting TBEV serology.
Ticks and Tick-borne Diseases | 2016
Lev Levanov; Cristina Pérez Vera; Olli Vapalahti
Tick-borne encephalitis (TBE) is one of the most dangerous human neurological infections occurring in Europe and Northern parts of Asia with thousands of cases and millions vaccinated against it. The risk of TBE might be assessed through analyses of the samples taken from wildlife or from animals which are in close contact with humans. Dogs have been shown to be a good sentinel species for these studies. Serological assays for diagnosis of TBE in dogs are mainly based on purified and inactivated TBEV antigens. Here we describe novel dog anti-TBEV IgG monoclonal antibody (MAb)-capture assay which is based on TBEV prME subviral particles expressed in mammalian cells from Semliki Forest virus (SFV) replicon as well as IgG immunofluorescence assay (IFA) which is based on Vero E6 cells transfected with the same SFV replicon. We further demonstrate their use in a small-scale TBEV seroprevalence study of dogs representing different regions of Finland. Altogether, 148 dog serum samples were tested by novel assays and results were compared to those obtained with a commercial IgG enzyme immunoassay (EIA), hemagglutination inhibition test and IgG IFA with TBEV infected cells. Compared to reference tests, the sensitivities of the developed assays were 90-100% and the specificities of the two assays were 100%. Analysis of the dog serum samples showed a seroprevalence of 40% on Åland Islands and 6% on Southwestern archipelago of Finland. In conclusion, a specific and sensitive EIA and IFA for the detection of IgG antibodies in canine sera were developed. Based on these assays the seroprevalence of IgG antibodies in dogs from different regions of Finland was assessed and was shown to parallel the known human disease burden as the Southwestern archipelago and Åland Islands in particular had considerable dog TBEV antibody prevalence and represent areas with high risk of TBE for humans.
Journal of Clinical Virology | 2015
Lev Levanov; Anu Jääskeläinen; Olli Vapalahti
BACKGROUND In many European countries (including Finland, Estonia, Latvia and Russia) two subtypes of tick-borne encephalitis virus (TBEV) occur with overlapping geographic distribution yet with apparently different severity and persistence of symptoms. However, it has not usually been possible to distinguish these infections in the laboratory, as TBEV RNA or sequences have rarely been retrieved from patients seeking medical care in the second phase of infection when the neurological symptoms occur, and serological tests have so far not been able to discriminate between the subtype-specific responses. OBJECTIVES The aim of this study was to assess the applicability of a μ-capture enzyme immunoassay (EIA) based on TBEV prME subviral particles produced in mammalian cells from Semliki-Forest virus replicons (SFV-prME EIA) to distinguish reactivity to European and Siberian strains of TBEV. STUDY DESIGN Altogether 54 TBEV IgM positive acute human serum samples and 6 positive cerebrospinal fluid (CSF) samples from different regions of Finland were tested in EIA with subtype-specific antigens and TBEV-IgM subtype-specific index ratios were determined. RESULTS All 30 samples from patients whose transmission had occurred in foci where only Siberian subtype of TBEV is occurring had an index ratio of more than 1.8, whereas all 30 acute TBE samples from an area where only European subtype circulates had an index ratio below 1.5. CONCLUSIONS We conclude that the assay is a useful tool to distinguish between acute infections of European and Siberian strains of TBEV, and should help in further studies of the clinical outcome of these two subtypes.
bioRxiv | 2018
Lev Levanov; Rommel Paneth Iheozor-Ejiofor; Åke Lundkvist; Olli Vapalahti; Alexander Plyusnin
Earlier four Monoclonal antibodies (MAbs) against surface glycoproteins Gn and Gc of Puumala virus (PUUV, genus Orthohantavirus, family Hantaviridae, order Bunyavirales) were generated and for three MAbs with neutralizing capacity the localization of binding epitopes was predicted using pepscan and phage-display techniques. In this work, we produced vesicular stomatitis virus (VSV) particles pseudotyped with the Gn and Gc glycoproteins of PUUV and applied site-directed mutagenesis to dissect the structure of neutralizing epitopes. Replacement of cysteine amino acid (aa) residues with alanines resulted in pseudotype particles with diminished (16 to 18%) neut-titers; double Cys→Ala mutants, as well as mutants with bulky aromatic and charged residues replaced with alanines, have shown even stronger reduction in neut-titers (from 25% to the escape phenotype). In silico modelling of the neut-epitopes supported the hypothesis that these critical residues are located on the surface of viral glycoprotein molecules and thus can be recognized by the antibodies indeed. Similar pattern was observed in experiments with mutant pseudotypes and sera collected from patients suggesting that these neut-epitopes are utilized in a course of human PUUV infection. IMPORTANCE Neutralization of viruses by antibodies is one of the key events in infection. We identified a set of mutations in the surface proteins of PUUV that reduced the virus-neutralizing activity of MAbs. Moreover, we found three mutants with escaped phenotype. These data will help understanding the mechanisms of hantavirus neutralization and assist construction of vaccine candidates.
Journal of General Virology | 2016
Rommel Paneth Iheozor-Ejiofor; Lev Levanov; Jussi Hepojoki; Tomas Strandin; Åke Lundkvist; Alexander Plyusnin; Olli Vapalahti
Puumala virus (PUUV) grows slowly in cell culture. To study antigenic properties of PUUV, an amenable method for their expression would be beneficial. To achieve this, a replication-defective recombinant vesicular stomatitis virus, rVSVΔG*EGFP, was rescued using BSRT7/5 and encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES)-enabled rescue plasmids. Using these particles, pseudotypes bearing PUUV Sotkamo strain glycoproteins were produced, with titres in the range 105-108, and were used in pseudotype focus reduction neutralization tests (pFRNTs) with neutralizing monoclonal antibodies and patient sera. The results were compared with those from orthodox focus reduction neutralization tests (oFRNTs) using native PUUV with the same samples and showed a strong positive correlation (rs = 0.82) between the methods. While developing the system we identified three amino acids which were mutated in the Vero E6 cell culture adapted PUUV prototype Sotkamo strain sequence, and changing these residues was critical for expression and neutralizing antibody binding of PUUV glycoproteins.
Journal of General Virology | 2015
Antti Vaheri; Satu Hepojoki; Lev Levanov; Anu Jääskeläinen; Heikki Henttonen; Olli Vapalahti; Tarja Sironen; Jussi Hepojoki