Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lewis Lukens is active.

Publication


Featured researches published by Lewis Lukens.


Nature | 1999

The limits of selection during maize domestication

Rong-Lin Wang; Adrian O. Stec; Jody Hey; Lewis Lukens; John Doebley

The domestication of all major crop plants occurred during a brief period in human history about 10,000 years ago. During this time, ancient agriculturalists selected seed of preferred forms and culled out seed of undesirable types to produce each subsequent generation. Consequently, favoured alleles at genes controlling traits of interest increased in frequency, ultimately reaching fixation. When selection is strong, domestication has the potential to drastically reduce genetic diversity in a crop. To understand the impact of selection during maize domestication, we examined nucleotide polymorphism in teosinte branched1, a gene involved in maize evolution. Here we show that the effects of selection were limited to the genes regulatory region and cannot be detected in the protein-coding region. Although selection was apparently strong, high rates of recombination and a prolonged domestication period probably limited its effects. Our results help to explain why maize is such a variable crop. They also suggest that maize domestication required hundreds of years, and confirm previous evidence that maize was domesticated from Balsas teosinte of southwestern Mexico.


Nature | 2005

The origin of the naked grains of maize

Huai Wang; Tina Nussbaum-Wagler; Bailin Li; Qiong Zhao; Yves Vigouroux; Marianna Faller; Kirsten Bomblies; Lewis Lukens; John Doebley

The most critical step in maize (Zea mays ssp. mays) domestication was the liberation of the kernel from the hardened, protective casing that envelops the kernel in the maize progenitor, teosinte. This evolutionary step exposed the kernel on the surface of the ear, such that it could readily be used by humans as a food source. Here we show that this key event in maize domestication is controlled by a single gene (teosinte glume architecture or tga1), belonging to the SBP-domain family of transcriptional regulators. The factor controlling the phenotypic difference between maize and teosinte maps to a 1-kilobase region, within which maize and teosinte show only seven fixed differences in their DNA sequences. One of these differences encodes a non-conservative amino acid substitution and may affect protein function, and the other six differences potentially affect gene regulation. Molecular evolution analyses show that this region was the target of selection during maize domestication. Our results demonstrate that modest genetic changes in single genes can induce dramatic changes in phenotype during domestication and evolution.


Plant Physiology | 2005

Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids.

Lewis Lukens; J. Chris Pires; Enrique J. León; Robert D. Vogelzang; Lynne Oslach; Thomas C. Osborn

Allopolyploid formation requires the adaptation of two nuclear genomes within a single cytoplasm, which may involve programmed genetic and epigenetic changes during the initial generations following genome fusion. To study the dynamics of genome change, we synthesized 49 isogenic Brassica napus allopolyploids and surveyed them with 76 restriction fragment length polymorphism (RFLP) probes and 30 simple sequence repeat (SSR) primer pairs. Here, we report on the types and distribution of genetic and epigenetic changes within the S1 genotypes. We found that insertion/deletion (indel) events were rare, but not random. Of the 57,710 (54,383 RFLP and 3,327 SSR) parental fragments expected among the amphidiploids, we observed 56,676 or 99.9%. Three loci derived from Brassica rapa had indels, and one indel occurred repeatedly across 29% (14/49) of the lines. Loss of one parental fragment was due to the 400-bp reduction of a guanine-adenine dinucleotide repeat-rich sequence. In contrast to the 4% (3/76) RFLP probes that detected indels, 48% (35/73) detected changes in the CpG methylation status between parental genomes and the S1 lines. Some loci were far more likely than others to undergo epigenetic change, but the number of methylation changes within each synthetic polyploid was remarkably similar to others. Clear de novo methylation occurred at a much higher frequency than de novo demethylation within allopolyploid sequences derived from B. rapa. Our results suggest that there is little genetic change in the S0 generation of resynthesized B. napus polyploids. In contrast, DNA methylation was altered extensively in a pattern that indicates tight regulation of epigenetic changes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Current perspectives and the future of domestication studies

Greger Larson; Dolores R. Piperno; Robin G. Allaby; Michael D. Purugganan; Leif Andersson; Manuel Arroyo-Kalin; Loukas Barton; Cynthia C. Vigueira; Tim Denham; Keith Dobney; Andrew N. Doust; Paul Gepts; M. Thomas P. Gilbert; Kristen J. Gremillion; Leilani Lucas; Lewis Lukens; Fiona Marshall; Kenneth M. Olsen; J. Chris Pires; Peter J. Richerson; Rafael Rubio de Casas; Oris I. Sanjur; Mark G. Thomas; Dorian Q. Fuller

It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not.


Plant Physiology | 2013

A Developmental Transcriptional Network for Maize Defines Coexpression Modules

Gregory Downs; Yong-Mei Bi; Joseph Colasanti; Wenqing Wu; Xi Chen; Tong Zhu; Steven J. Rothstein; Lewis Lukens

Analyzing transcript abundance between tissues and during development identifies sets of coexpressed genes and related transcriptional controls. Here, we present a genome-wide overview of transcriptional circuits in the agriculturally significant crop species maize (Zea mays). We examined transcript abundance data at 50 developmental stages, from embryogenesis to senescence, for 34,876 gene models and classified genes into 24 robust coexpression modules. Modules were strongly associated with tissue types and related biological processes. Sixteen of the 24 modules (67%) have preferential transcript abundance within specific tissues. One-third of modules had an absence of gene expression in specific tissues. Genes within a number of modules also correlated with the developmental age of tissues. Coexpression of genes is likely due to transcriptional control. For a number of modules, key genes involved in transcriptional control have expression profiles that mimic the expression profiles of module genes, although the expression of transcriptional control genes is not unusually representative of module gene expression. Known regulatory motifs are enriched in several modules. Finally, of the 13 network modules with more than 200 genes, three contain genes that are notably clustered (P < 0.05) within the genome. This work, based on a carefully selected set of major tissues representing diverse stages of maize development, demonstrates the remarkable power of transcript-level coexpression networks to identify underlying biological processes and their molecular components.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication

Andrew N. Doust; Lewis Lukens; Kenneth M. Olsen; Margarita Mauro-Herrera; Ann Meyer; Kimberly Rogers

Significance Recent archaeological studies of crop domestication have suggested a relatively slow spread and fixation of some key domestication traits, such as the loss of seed shattering. In contrast, genetic studies often indicate that domestication traits have a fairly simple genetic basis, which should facilitate their rapid evolution under selection. Here we examine previously underexplored factors that could account for this apparent disconnect: the roles of gene-by-gene interactions (epistasis) and gene-by-environment effects in shaping the rate of phenotypic evolution during domestication. Analysis of a Setaria mapping population, together with a review of evidence from the literature, suggests that these genetic factors, although important, are unlikely to have played a major role in constraining the rate of phenotypic evolution during domestication. Domestication is a multifaceted evolutionary process, involving changes in individual genes, genetic interactions, and emergent phenotypes. There has been extensive discussion of the phenotypic characteristics of plant domestication, and recent research has started to identify the specific genes and mutational mechanisms that control domestication traits. However, there is an apparent disconnect between the simple genetic architecture described for many crop domestication traits, which should facilitate rapid phenotypic change under selection, and the slow rate of change reported from the archeobotanical record. A possible explanation involves the middle ground between individual genetic changes and their expression during development, where gene-by-gene (epistatic) and gene-by-environment interactions can modify the expression of phenotypes and opportunities for selection. These aspects of genetic architecture have the potential to significantly slow the speed of phenotypic evolution during crop domestication and improvement. Here we examine whether epistatic and gene-by-environment interactions have shaped how domestication traits have evolved. We review available evidence from the literature, and we analyze two domestication-related traits, shattering and flowering time, in a mapping population derived from a cross between domesticated foxtail millet and its wild progenitor. We find that compared with wild progenitor alleles, those favored during domestication often have large phenotypic effects and are relatively insensitive to genetic background and environmental effects. Consistent selection should thus be able to rapidly change traits during domestication. We conclude that if phenotypic evolution was slow during crop domestication, this is more likely due to cultural or historical factors than epistatic or environmental constraints.


Theoretical and Applied Genetics | 2010

Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans.

Laura Palomeque; Lijun Liu; Wenbin Li; Bradley R. Hedges; Elroy R. Cober; Mathew P. Smid; Lewis Lukens; Istvan Rajcan

The value of quantitative trait loci (QTL) is dependant on the strength of association with the traits of interest, allelic diversity at the QTL and the effect of the genetic background on the expression of the QTL. A number of recent studies have identified QTL associated with traits of interest that appear to be independent of the environment but dependant on the genetic background in which they are found. Therefore, the objective of this study was to validate universal and/or mega-environment-specific seed yield QTL that have been previously reported in an independent recombinant inbred line (RIL) population derived from the cross between an elite Chinese and Canadian parent. The population was evaluated at two field environments in China and in five environments in Canada in 2005 and 2006. Of the seven markers linked to seed yield QTL reported by our group in a previous study, four were polymorphic between the two parents. No association between seed yield and QTL was observed. The result could imply that seed yield QTL were either not stable in this particular genetic background or harboured different alleles than the ones in the original mapping population. QTLU Satt162 was associated with several agronomic traits of which lodging was validated. Both the non-adapted and adapted parent contributed favourable alleles to the progeny. Therefore, plant introductions have been validated as a source of favourable alleles that could increase the genetic variability of the soybean germplasm pool and lead to further improvements in seed yield and other agronomic traits.


PLOS ONE | 2010

Identification of Novel miRNAs and miRNA Dependent Developmental Shifts of Gene Expression in Arabidopsis thaliana

Shuhua Zhan; Lewis Lukens

microRNAs (miRNAs) are small, endogenous RNAs of 20∼25 nucleotides, processed from stem-loop regions of longer RNA precursors. Plant miRNAs act as negative regulators of target mRNAs predominately by slicing target transcripts, and a number of miRNAs play important roles in development. We analyzed a number of published datasets from Arabidopsis thaliana to characterize novel miRNAs, novel miRNA targets, and miRNA-regulated developmental changes in gene expression. These data include microarray profiling data and small RNA (sRNA) deep sequencing data derived from miRNA biogenesis/transport mutants, microarray profiling data of mRNAs in a developmental series, and computational predictions of conserved genomic stem-loop structures. Our conservative analyses identified five novel mature miRNAs and seven miRNA targets, including one novel target gene. Two complementary miRNAs that target distinct mRNAs were encoded by one gene. We found that genes targeted by known miRNAs, and genes up-regulated or down-regulated in miRNA mutant inflorescences, are highly expressed in the wild type inflorescence. In addition, transcripts upregulated within the mutant inflorescences were abundant in wild type leaves and shoot meristems and low in pollen and seed. Downregulated transcripts were abundant in wild type pollen and seed and low in shoot meristems, roots and leaves. Thus, disrupting miRNA function causes the inflorescence transcriptome to resemble the leaf and meristem and to differ from pollen and seed. Applications of our computational approach to other species and the use of more liberal criteria than reported here will further expand the number of identified miRNAs and miRNA targets. Our findings suggest that miRNAs have a global role in promoting vegetative to reproductive transitions in A. thaliana.


G3: Genes, Genomes, Genetics | 2011

An Evaluation of Arabidopsis thaliana Hybrid Traits and Their Genetic Control

Siobhan Moore; Lewis Lukens

Heterosis is an important phenomenon in agriculture. However, heterosis often greatly varies among hybrids and among traits. To investigate heterosis across a large number of traits and numerous genotypes, we evaluated 12 life history traits on parents and hybrids derived from five Arabidopsis thaliana ecotypes (Col, Ler-0, Cvi, Ws, and C24) by using a complete diallel analysis containing 20 hybrids. Parental contributions to heterosis were hybrid and trait specific with a few reciprocal differences. Most notably, C24 generated hybrids with flowering time, biomass, and reproductive traits that often exceeded high-parent values. However, reproductive traits of C24 and Col hybrids and flowering time traits of C24 and Ler hybrids had no heterosis. We investigated whether allelic variation at flowering time genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) could explain the genotype- and trait-specific contribution of C24 to hybrid traits. We evaluated both Col and Ler lines introgressed with various FRI and FLC alleles and hybrids between these lines and C24. Hybrids with functional FLC differed from hybrids with nonfunctional FLC for 21 of the 24 hybrid-trait combinations. In most crosses, heterosis was fully or partially explained by FRI and FLC. Our results describe the genetic diversity for heterosis within a sample of A. thaliana ecotypes and show that FRI and FLC are major factors that contribute to heterosis in a genotype and trait specific fashion.


BMC Genomics | 2014

High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation.

Yong-Mei Bi; Ann Meyer; Gregory Downs; Xuejiang Shi; Ashraf El-Kereamy; Lewis Lukens; Steven J. Rothstein

BackgroundDevelopment of crop varieties with high nitrogen use efficiency (NUE) is crucial for minimizing N loss, reducing environmental pollution and decreasing input cost. Maize is one of the most important crops cultivated worldwide and its productivity is closely linked to the amount of fertilizer used. A survey of the transcriptomes of shoot and root tissues of a maize hybrid line and its two parental inbred lines grown under sufficient and limiting N conditions by mRNA-Seq has been conducted to have a better understanding of how different maize genotypes respond to N limitation.ResultsA different set of genes were found to be N-responsive in the three genotypes. Many biological processes important for N metabolism such as the cellular nitrogen compound metabolic process and the cellular amino acid metabolic process were enriched in the N-responsive gene list from the hybrid shoots but not from the parental lines’ shoots. Coupled to this, sugar, carbohydrate, monosaccharide, glucose, and sorbitol transport pathways were all up-regulated in the hybrid, but not in the parents under N limitation. Expression patterns also differed between shoots and roots, such as the up-regulation of the cytokinin degradation pathway in the shoots of the hybrid and down-regulation of that pathway in the roots. The change of gene expression under N limitation in the hybrid resembled the parent with the higher NUE trait. The transcript abundances of alleles derived from each parent were estimated using polymorphic sites in mapped reads in the hybrid. While there were allele abundance differences, there was no correlation between these and the expression differences seen between the hybrid and the two parents.ConclusionsGene expression in two parental inbreds and the corresponding hybrid line in response to N limitation was surveyed using the mRNA-Seq technology. The data showed that the three genotypes respond very differently to N-limiting conditions, and the hybrid clearly has a unique expression pattern compared to its parents. Our results expand our current understanding of N responses and will help move us forward towards effective strategies to improve NUE and enhance crop production.

Collaboration


Dive into the Lewis Lukens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge