Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tim J. Wooster is active.

Publication


Featured researches published by Tim J. Wooster.


Langmuir | 2008

Impact of Oil Type on Nanoemulsion Formation and Ostwald Ripening Stability

Tim J. Wooster; Matt Golding; Peerasak Sanguansri

The formation of stable transparent nanoemulsions poses two challenges: the ability to initially create an emulsion where the entire droplet size distribution is below 80 nm, and the subsequent stabilization of this emulsion against Ostwald ripening. The physical properties of the oil phase and the nature of the surfactant layer were found to have a considerable impact on nanoemulsion formation and stabilization. Nanoemulsions made with high viscosity oils, such as long chain triglycerides (LCT), were considerably larger ( D = 120 nm) than nanoemulsions prepared with low viscosity oils such as hexadecane ( D = 80 nm). The optimization of surfactant architecture, and differential viscosity eta D/eta C, has led to the formation of remarkably small nanoemulsions. With average sizes below 40 nm they are some of the smallest homogenized emulsions ever reported. What is more remarkable is that LCT nanoemulsions do not undergo Ostwald ripening and are physically stable for over 3 months. Ostwald ripening is prevented by the large molar volume of long chain triglyceride oils, which makes them insoluble in water thus providing a kinetic barrier to Ostwald ripening. Examination of the Ostwald ripening of mixed oil nanoemulsions found that the entropy gain associated with oil demixing provided a thermodynamic barrier to Ostwald ripening. Not only are the nanoemulsions created in this work some of the smallest reported, but they are also thermodynamically stable to Ostwald ripening when at least 50% of the oil phase is an insoluble triglyceride.


Soft Matter | 2011

Impact of gastric structuring on the lipolysis of emulsified lipids

Matt Golding; Tim J. Wooster; Li Day; Mi Xu; Leif Lundin; Jennifer B. Keogh; Peter M. Clifton

Understanding and manipulating how emulsion structure impacts on fat digestion is an important step towards understanding the role of fat in our diet. This article reports on the nature of emulsion structuring within the digestive tract and how it affects the dynamics of fat digestion. Emulsions were designed a priori to have specific structuring behaviours (stable, coalesced, partially coalesced and fully broken) under gastrointestinal conditions, through careful emulsifier selection and control of solid fat composition. The impact these structures had on lipolysis was then assessed in vitro using a digestion model and in vivo by measuring the postprandial change in blood triglyceride concentration as a marker of fat absorption. The major factor controlling the rate of fat digestion in vitro was the droplet surface area available for lipase adsorption, which was governed by emulsion instability. The rate of fat absorption in vivo was only affected by large changes in the droplet surface area, and only if these changes remained until the droplets reached the small intestine. This was most evident in emulsions that had undergone extensive partial coalescence under gastric conditions. Partial coalescence resulted in a dramatic reduction in triglyceride absorption, in part because the network of fat crystals provided the agglomerates with an internal scaffold to resist re-dispersion as they passed through the pylorus. The differences in fat absorption profile achieved by controlling emulsion structural stability during digestion provide a basis for examining the physiological effects of food structure on lipid metabolism, which will be the subject of a follow-up clinical paper.


Langmuir | 2011

Structural Rearrangement of β-Lactoglobulin at Different Oil–Water Interfaces and Its Effect on Emulsion Stability

Jiali Zhai; Tim J. Wooster; Søren V. Hoffmann; Tzong-Hsien Lee; Mary Ann Augustin; Marie-Isabel Aguilar

Understanding the factors that control protein structure and stability at the oil-water interface continues to be a major focus to optimize the formulation of protein-stabilized emulsions. In this study, a combination of synchrotron radiation circular dichroism spectroscopy, front-face fluorescence spectroscopy, and dual polarization interferometry (DPI) was used to characterize the conformation and geometric structure of β-lactoglobulin (β-Lg) upon adsorption to two oil-water interfaces: a hexadecane-water interface and a tricaprylin-water interface. The results show that, upon adsorption to both oil-water interfaces, β-Lg went through a β-sheet to α-helix transition with a corresponding loss of its globular tertiary structure. The degree of conformational change was also a function of the oil phase polarity. The hexadecane oil induced a much higher degree of non-native α-helix compared to the tricaprylin oil. In contrast to the β-Lg conformation in solution, the non-native α-helical-rich conformation of β-Lg at the interface was resistant to further conformational change upon heating. DPI measurements suggest that β-Lg formed a thin dense layer at emulsion droplet surfaces. The effects of high temperature and the presence of salt on these β-Lg emulsions were then investigated by monitoring changes in the ζ-potential and particle size. In the absence of salt, high electrostatic repulsion meant β-Lg-stabilized emulsions were resistant to heating to 90 °C. Adding salt (120 mM NaCl) before or after heating led to emulsion flocculation due to the screening of the electrostatic repulsion between colloidal particles. This study has provided insight into the structural properties of proteins adsorbed at the oil-water interface and has implications in the formulation and production of emulsions stabilized by globular proteins.


Langmuir | 2011

Revisiting β-casein as a stabilizer for lipid liquid crystalline nanostructured particles.

Jiali Zhai; Lynne J. Waddington; Tim J. Wooster; Marie-Isabel Aguilar; Ben J. Boyd

Lipid liquid crystalline nanoparticles such as cubosomes and hexosomes have unique internal nanostructures that have shown great potential in drug and nutrient delivery applications. The triblock copolymer, Pluronic F127, is usually employed as a steric stabilizer in dispersions of lipid nanostructured particles. In this study, we investigated the formation, colloidal stability and internal nanostructure and morphology of glyceryl monooleate (GMO) and phytantriol (PHYT) cubosome dispersions on substituting β-casein with F127 in increasing proportion as the stabilizer. Internal structure and particle morphology were evaluated using small-angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM), while protein secondary structure was studied using synchrotron radiation circular dichroism (SRCD). The GMO cubosome dispersion stabilized by β-casein alone displayed a V(2) (Pn3m) phase structure and a V(2) to H(2) phase transition at 60 °C. In comparison, F127-stabilized GMO dispersion had a V(2) (Im3m) phase structure and the H(2) phase only appeared at higher temperature, that is, 70 °C. In the case of PHYT dispersions, only the V(2) (Pn3m) phase structure was observed irrespective of the type and concentration of stabilizers. However, β-casein-stabilized PHYT dispersion displayed a V(2) to H(2) to L(2) transition behavior upon heating, whereas F127-stabilized PHYT dispersion displayed only a direct V(2) to L(2) transition. The protein secondary structure was not disturbed by interaction with GMO or PHYT cubosomes. The results demonstrate that β-casein provides steric stabilization to dispersions of lipid nanostructured particles and avoids the transition to Im3m structure in GMO cubosomes, but also favors the formation of the H(2) phase, which has implications in drug formulation and delivery applications.


Biomacromolecules | 2010

Changes in beta-lactoglobulin conformation at the oil/water interface of emulsions studied by synchrotron radiation circular dichroism spectroscopy.

Jiali Zhai; Andrew J. Miles; Leonard K. Pattenden; Tzong-Hsien Lee; Mary Ann Augustin; B. A. Wallace; Marie-Isabel Aguilar; Tim J. Wooster

The structure of proteins at interfaces is a key factor determining the stability as well as organoleptic properties of food emulsions. While it is widely believed that proteins undergo conformational changes at interfaces, the measurement of these structural changes remains a significant challenge. In this study, the conformational changes of beta-lactoglobulin (beta-Lg) upon adsorption to the interface of hexadecane oil-in-water emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy. Far-UV SRCD spectra showed that adsorption of beta-Lg to the O/W interface caused a significant increase in non-native alpha-helix structure, accompanied by a concomitant loss of beta-sheet structure. Near-UV SRCD spectra revealed that a considerable disruption of beta-Lg tertiary structure occurred upon adsorption. Moreover, heat-induced changes to the non-native beta-Lg conformation at the oil/water interface were very small compared to the dramatic loss of beta-Lg secondary structure that occurred during heating in solution, suggesting that the interface has a stabilizing effect on the structure of non-native beta-Lg. Overall, our findings provide insight into the conformational behavior of proteins at oil/water interfaces and demonstrate the applicability of SRCD spectroscopy for measuring the conformation of adsorbed proteins in optically turbid emulsions.


Langmuir | 2012

Conformational Changes of α-Lactalbumin Adsorbed at Oil–Water Interfaces: Interplay between Protein Structure and Emulsion Stability

Jiali Zhai; Søren V. Hoffmann; Li Day; Tzong-Hsien Lee; Mary Ann Augustin; Marie-Isabel Aguilar; Tim J. Wooster

The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the β-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of the electrostatic repulsion and the lack of covalent disulfide interchange reactions. This study reports new information on the secondary and tertiary structural changes of α-La upon adsorption to oil-water interfaces. It also presents new results on the physical stability of α-La stabilized emulsions during heating and at moderate ionic strength (120 mM NaCl). The results broaden our understanding of the factors controlling protein structural change at emulsion interfaces and how this affects emulsion stability.


Journal of Nutrition | 2011

Slowly and Rapidly Digested Fat Emulsions Are Equally Satiating but Their Triglycerides Are Differentially Absorbed and Metabolized in Humans

Jennifer B. Keogh; Tim J. Wooster; Matt Golding; Li Day; B. Otto; Peter M. Clifton

Little is known about the effect of dietary fat emulsion microstructure on plasma TG concentrations, satiety hormones, and food intake. The aim of this study was to structure dietary fat to slow digestion and flatten postprandial plasma TG concentrations but not increase food intake. Emulsions were stabilized by egg lecithin (control), sodium sterol lactylate, or sodium caseinate/monoglyceride (CasMag) with either liquid oil or a liquid oil/solid fat mixture. In a randomized, double-blind, crossover design, 4 emulsions containing 30 g of fat in a 350-mL preload were consumed by 10 men and 10 women (BMI = 25.1 ± 2.8 kg/m(2); age = 58.8 ± 4.8 y). Pre- and postprandial plasma TG, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) concentrations and food intake were measured. In a second experiment in a subset of the participants (n = 8, 4 men and 4 women), (13)C-labeled mixed TG was incorporated into 2 different emulsions and breath (13)C was measured over 6 h. In the first experiment, the postprandial rise in plasma TG concentrations following the CasMag-stabilized emulsion containing 30% solid fat was lower than all other emulsions at 90 and 120 min (P < 0.05). Plasma CCK (P < 0.0001), GLP-1 (P < 0.01), and PYY (P < 0.001) concentrations were also reduced following this emulsion compared with control. Food intake at a test meal, eaten 3 h after the preload, did not differ among the emulsions. In the second experiment, when measured by the (13)C breath test, 25% of the TG in the CasMag emulsion was absorbed and metabolized compared with control. In conclusion, fat can be structured to decrease its effect on plasma TG concentrations without increasing food intake.


RSC Advances | 2017

Biological fate of food nanoemulsions and the nutrients they carry – internalisation, transport and cytotoxicity of edible nanoemulsions in Caco-2 intestinal cells

Tim J. Wooster; Sean C. Moore; Wei Chen; Helen Andrews; Rama Addepalli; Robert B. Seymour; Simone A. Osborne

Edible nanoemulsions are promising delivery systems with the potential to enhance nutrient/drug solubilisation, digestibility, bioavailability and potentially facilitate direct cellular uptake. However, the high potential of edible nanoparticles has also led to concerns about their biological fate and whether these nanoparticles or the active ingredients they carry pose (new) toxicological risks. Here we outline the development of new sub 50 nm edible nanoemulsions that allow us to probe the duality of enhanced nutrient solubilisation and bioavailability with potential toxicological side effects. The toxicity and biological fate of the edible nanoemulsions was investigated using Caco-2 cells to facilitate cell viability assays, transport of nanoemulsions across an in vitro intestinal model and internalisation visualised by confocal microscopy. These experiments demonstrate that edible nanoemulsion toxicity is not just a function of surfactant composition, but more critically a synergistic effect between surfactants and their physical location. Critically the presence of reactive ingredients (β-carotene) leads to a dramatic increase in nanoemulsion toxicity that may counteract the benefits associated with enhanced solubilisation/cellular uptake. Such research into the biological fate of edible food nanoemulsions and the nutrients they carry is important not only because nanotechnology in food is an emotive topic, but also because these insights may inform public policy decisions.


Current Opinion in Colloid and Interface Science | 2010

The influence of emulsion structure and stability on lipid digestion

Matt Golding; Tim J. Wooster


Journal of Colloid and Interface Science | 2006

β-Lactoglobulin-dextran Maillard conjugates : Their effect on interfacial thickness and emulsion stability

Tim J. Wooster; Mary Ann Augustin

Collaboration


Dive into the Tim J. Wooster's collaboration.

Top Co-Authors

Avatar

Li Day

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiali Zhai

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Mi Xu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter M. Clifton

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Jennifer B. Keogh

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif Lundin

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Helen Andrews

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge