Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li-Fen Huang is active.

Publication


Featured researches published by Li-Fen Huang.


The Plant Cell | 2007

The SnRK1A Protein Kinase Plays a Key Role in Sugar Signaling during Germination and Seedling Growth of Rice

Chung-An Lu; Chih-Cheng Lin; Kuo-Wei Lee; Jyh-Long Chen; Li-Fen Huang; Shin-Lon Ho; Hsin-Ju Liu; Yue-Ie C. Hsing; Su-May Yu

Sugars repress α-amylase expression in germinating embryos and cell cultures of rice (Oryza sativa) through a sugar response complex (SRC) in α-amylase gene promoters and its interacting transcription factor MYBS1. The Snf1 protein kinase is required for the derepression of glucose-repressible genes in yeast. In this study, we explored the role of the yeast Snf1 ortholog in rice, SnRK1, in sugar signaling and plant growth. Rice embryo transient expression assays indicated that SnRK1A and SnRK1B act upstream and relieve glucose repression of MYBS1 and αAmy3 SRC promoters. Both SnRK1s contain N-terminal kinase domains serving as activators and C-terminal regulatory domains as dominant negative regulators of SRC. The accumulation and activity of SnRK1A was regulated by sugars posttranscriptionally, and SnRK1A relieved glucose repression specifically through the TA box in SRC. A transgenic RNA interference approach indicated that SnRK1A is also necessary for the activation of MYBS1 and αAmy3 expression under glucose starvation. Two mutants of SnRK1s, snrk1a and snrk1b, were obtained, and the functions of both SnRK1s were further studied. Our studies demonstrated that SnRK1A is an important intermediate in the sugar signaling cascade, functioning upstream from the interaction between MYBS1 and αAmy3 SRC and playing a key role in regulating seed germination and seedling growth in rice.


Plant Physiology | 2004

Signal Peptide-Dependent Targeting of a Rice α-Amylase and Cargo Proteins to Plastids and Extracellular Compartments of Plant Cells

Min-Huei Chen; Li-Fen Huang; Hsou-min Li; Yung-Reui Chen; Su-May Yu

α-Amylases are important enzymes for starch degradation in plants. However, it has been a long-running debate as to whether α-amylases are localized in plastids where starch is stored. To study the subcellular localization of α-amylases in plant cells, a rice (Oryza sativa) α-amylase, αAmy3, with or without its own signal peptide (SP) was expressed in transgenic tobacco (Nicotiana tabacum) and analyzed. Loss-of-function analyses revealed that SP was required for targeting of αAmy3 to chloroplasts and/or amyloplasts and cell walls and/or extracellular compartments of leaves and suspension cells. SP was also required for in vitro transcribed and/or translated αAmy3 to be cotranslationally imported and processed in canine microsomes. αAmy3, present in chloroplasts of transgenic tobacco leaves, was processed to a product with Mr similar to αAmy3 minus its SP. Amino acid sequence analysis revealed that the SP of chloroplast localized αAmy3 was cleaved at a site only one amino acid preceding the predicted cleavage site. Function of the αAmy3 SP was further studied by gain-of-function analyses. β-Glucuronidase (GUS) and green fluorescence protein fused with or without the αAmy3 SP was expressed in transgenic tobacco or rice. The αAmy3 SP directed translocation of GUS and green fluorescence protein to chloroplasts and/or amyloplasts and cell walls in tobacco leaves and rice suspension cells. The SP of another rice α-amylase, αAmy8, similarly directed the dual localizations of GUS in transgenic tobacco leaves. This study is the first evidence of SP-dependent dual translocations of proteins to plastids and extracellular compartments, which provides new insights into the role of SP in protein targeting and the pathways of SP-dependent protein translocation in plants.


Transgenic Research | 2005

Production of human serum albumin by sugar starvation induced promoter and rice cell culture

Li-Fen Huang; Yu-Kuo Liu; Chung-An Lu; Shie-Liang Hsieh; Su-May Yu

AbstractHuman serum albumin (HSA) is the most widely used clinical serum protein. Currently, commercial HSA can only be obtained from human plasma, due to lack of commercially feasible recombinant protein expression systems. In this study, inducible expression and secretion of HSA by transformed rice suspension cell culture was established. Mature form of HSA was expressed under the control of the sucrose starvation-inducible rice α Amy3 promoter, and secretion of HSA into the culture medium was achieved by using the α Amy3 signal sequence. High concentrations of HSA were secreted into culture medium in a short time (2–4 days) by sucrose depletion after cell concentrations had reached a peak density in culture medium containing sucrose. The recombinant HSA had the same electrophoretic mobility as commercial HSA and was stable and free from apparent proteolysis in the culture medium. In a flask scale culture with repeated sucrose provision-depletion cycles, HSA was stably produced with yields up to 11.5% of total medium proteins or 15 mg/L per cycle after each sucrose provision-depletion cycle. A bubble column type bioreactor was designed for production of HSA. In the bioreactor scale culture, HSA was produced with yields up to 76.4 mg/L 4 days after sucrose depletion. HSA was purified from the culture medium to high purity by a simple purification scheme. Enrichment of HSA in culture medium simplifies downstream purification, minimizes protease degradation, and may reduce production cost. The combination of a DNA construct containing the α Amy3 promoter and signal sequence, and the use of a rice suspension cell culture can provide an effective system for the production of recombinant pharmaceutical proteins.


Plant and Cell Physiology | 2010

A DEAD-Box Protein, AtRH36, is Essential for Female Gametophyte Development and is Involved in rRNA Biogenesis in Arabidopsis

Chun-Kai Huang; Li-Fen Huang; Jin-Ji Huang; Shaw-Jye Wu; Ching-Hui Yeh; Chung-An Lu

DEAD-box RNA helicases are involved in RNA metabolism, including pre-mRNA splicing, ribosome biogenesis, RNA decay and gene expression. In this study, we identified a homolog of the RH36 gene, AtRH36, which encodes a DEAD-box protein in Arabidopsis thaliana. The gene was expressed ubiquitously throughout the plant. The AtRH36 fused to green fluorescent protein was localized in the nucleus. Homozygosity for the Arabidopsis atrh36 mutants, atrh36-1 and atrh36-2, could not be obtained. Progeny of selfed Arabidopsis atrh36 heterozygote plants were obtained at a heterozygote to wild-type ratio of 1 : 1, which suggested that the AtRH36 gene was involved in gametogenesis. Therefore, we performed a reciprocal cross to determine whether AtRH36 was involved in female gametophyte development. Female gametogenesis was delayed in atrh36-1, and asynchronous development of the female gametophytes was found within a single pistil. Knock-down of AtRH36 gave a pleiotropic phenotype and led to the accumulation of unprocessed 18S pre-rRNA. These results suggest that AtRH36 is essential for mitotic division during female gametogenesis and plays an important role in rRNA biogenesis in Arabidopsis.


Plant Molecular Biology | 2013

Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings.

Shin-Lon Ho; Li-Fen Huang; Chung-An Lu; Siou-Luan He; Chun-Chin Wang; Sheng-Ping Yu; Jychian Chen; Su-May Yu

Germination followed by seedling growth constitutes two essential steps in the initiation of a new life cycle in plants, and in cereals, completion of these steps is regulated by sugar starvation and the hormone gibberellin. A calcium-dependent protein kinase 1 gene (OsCDPK1) was identified by differential screening of a cDNA library derived from sucrose-starved rice suspension cells. The expression of OsCDPK1 was found to be specifically activated by sucrose starvation among several stress conditions tested as well as activated transiently during post-germination seedling growth. In gain- and loss-of-function studies performed with transgenic rice overexpressing a constitutively active or RNA interference gene knockdown construct, respectively, OsCDPK1 was found to negatively regulate the expression of enzymes essential for GA biosynthesis. In contrast, OsCDPK1 activated the expression of a 14-3-3 protein, GF14c. Overexpression of either constitutively active OsCDPK1 or GF14c enhanced drought tolerance in transgenic rice seedlings. Hence, our studies demonstrated that OsCDPK1 transduces the post-germination Ca2+ signal derived from sugar starvation and GA, refines the endogenous GA concentration and prevents drought stress injury, all essential functions to seedling development at the beginning of the life cycle in rice.


International Journal of Molecular Sciences | 2013

Improving Pharmaceutical Protein Production in Oryza sativa

Yu-Chieh Kuo; Chia-Chun Tan; Jung-Ting Ku; Wei-Cho Hsu; Sung-Chieh Su; Chung-An Lu; Li-Fen Huang

Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed.


Biotechnology and Bioengineering | 2012

Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture.

Yu-Kuo Liu; Li-Fen Huang; Shin-Lon Ho; Chun-Yu Liao; Hsin-Yi Liu; Ying-Hui Lai; Su-May Yu; Chung-An Lu

To establish a production platform for recombinant proteins in rice suspension cells, we first constructed a Gateway‐compatible binary T‐DNA destination vector. It provided a reliable and effective method for the rapid directional cloning of target genes into plant cells through Agrobacterium‐mediated transformation. We used the approach to produce mouse granulocyte‐macrophage colony‐stimulating factor (mGM‐CSF) in a rice suspension cell system. The promoter for the αAmy3 amylase gene, which is induced strongly by sugar depletion, drove the expression of mGM‐CSF. The resulting recombinant protein was fused with the αAmy3 signal peptide and was secreted into the culture medium. The production of rice‐derived mGM‐CSF (rmGM‐CSF) was scaled up successfully in a 2‐L bioreactor, in which the highest yield of rmGM‐CSF was 24.6 mg/L. Due to post‐translational glycosylation, the molecular weight of rmGM‐CSF was larger than that of recombinant mGM‐CSF produced in Escherichia coli. The rmGM‐CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF‐60. Biotechnol. Bioeng. 2012; 109:1239–1247.


Plant and Cell Physiology | 2016

The DEAD-box RNA helicase AtRH7/PRH75 participates in pre-rRNA processing, plant development and cold tolerance in Arabidopsis

Chun-Kai Huang; Yu-Lien Shen; Li-Fen Huang; Shaw-Jye Wu; Chin-Hui Yeh; Chung-An Lu

DEAD-box RNA helicases belong to an RNA helicase family that plays specific roles in various RNA metabolism processes, including ribosome biogenesis, mRNA splicing, RNA export, mRNA translation and RNA decay. This study investigated a DEAD-box RNA helicase, AtRH7/PRH75, in Arabidopsis. Expression of AtRH7/PRH75 was ubiquitous; however, the levels of mRNA accumulation were increased in cell division regions and were induced by cold stress. The phenotypes of two allelic AtRH7/PRH75-knockout mutants, atrh7-2 and atrh7-3, resembled auxin-related developmental defects that were exhibited in several ribosomal protein mutants, and were more severe under cold stress. Northern blot and circular reverse transcription-PCR (RT-PCR) analyses indicated that unprocessed 18S pre-rRNAs accumulated in the atrh7 mutants. The atrh7 mutants were hyposensitive to the antibiotic streptomycin, which targets ribosomal small subunits, suggesting that AtRH7 was also involved in ribosome assembly. In addition, the atrh7-2 and atrh7-3 mutants displayed cold hypersensitivity and decreased expression of CBF1, CBF2 and CBF3, which might be responsible for the cold intolerance. The present study indicated that AtRH7 participates in rRNA biogenesis and is also involved in plant development and cold tolerance in Arabidopsis.


Plant Molecular Biology | 2015

A single-repeat MYB transcription repressor, MYBH, participates in regulation of leaf senescence in Arabidopsis.

Chun-Kai Huang; Pei-Ching Lo; Li-Fen Huang; Shaw-Jye Wu; Ching-Hui Yeh; Chung-An Lu

Leaf senescence, the final stage of leaf development, is regulated tightly by endogenous and environmental signals. MYBS3, a MYB transcription factor with a single DNA-binding domain, mediates sugar signaling in rice. Here we report that an Arabidopsis MYBS3 homolog, MYBH, plays a critical role in developmentally regulated and dark-induced leaf senescence by repressing transcription. Expression of MYBH was enhanced in older and dark-treated leaves. Gain- and loss-of-function analysis indicated that MYBH was involved in the onset of leaf senescence. Plants constitutively overexpressing MYBH underwent premature leaf senescence and showed enhanced expression of leaf senescence marker genes. In contrast, the MYBH mutant line, mybh-1, exhibited a delayed-senescence phenotype. The EAR repression domain was required for MYBH-regulated leaf senescence. Overexpression and knockout of MYBH repressed and enhanced auxin-responsive gene expression, respectively. MYBH repressed the auxin-amido synthase genes DFL1/GH3.6 and DFL2/GH3.10, which regulate auxin homoeostasis, by binding directly to the TA box in each of their regulatory regions. An auxin-responsive phenotype was enhanced in MYBH overexpression lines and reduced in mybh knockout lines. Overexpression of MYBH enhanced gene expression of SAUR36, an auxin-promoted leaf senescence key regulator, and accelerated ABA- and ethylene-induced leaf senescence in transgenic Arabidopsis plants. Our results suggest that the role of MYBH in controlling auxin homeostasis accounts for its capacity to participate in regulation of age- and darkness-induced leaf senescence in Arabidopsis.


Plant Molecular Biology | 2014

Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa

Wei-Lun Chou; Li-Fen Huang; Jhen-Cheng Fang; Ching-Hui Yeh; Chwan-Yang Hong; Shaw-Jye Wu; Chung-An Lu

Deadenylation, also called poly(A) tail shortening, is the first, rate-limiting step in the general cytoplasmic mRNA degradation in eukaryotic cells. The CCR4-NOT complex, containing the two key components carbon catabolite repressor 4 (CCR4) and CCR4-associated factor 1 (CAF1), is a major player in deadenylation. CAF1 belongs to the RNase D group in the DEDD superfamily, and is a protein conserved through evolution from yeast to humans and plants. Every higher plant, including Arabidopsis and rice, contains a CAF1 multigene family. In this study, we identified and cloned four OsCAF1 genes (OsCAF1A, OsCAF1B, OsCAF1G, and OsCAF1H) from rice. Four recombinant OsCAF1 proteins, rOsCAF1A, rOsCAF1B, rOsCAF1G, and rOsCAF1H, all exhibited 3′–5′ exonuclease activity in vitro. Point mutations in the catalytic residues of each analyzed recombinant OsCAF1 proteins were shown to disrupt deadenylase activity. OsCAF1A and OsCAF1G mRNA were found to be abundant in the leaves of mature plants. Two types of OsCAF1B mRNA transcript were detected in an inverse expression pattern in various tissues. OsCAF1B was transient, induced by drought, cold, abscisic acid, and wounding treatments. OsCAF1H mRNA was not detected either under normal conditions or during most stress treatments, but only accumulated during heat stress. Four OsCAF1-reporter fusion proteins were localized in both the cytoplasm and nucleus. In addition, when green fluorescent protein fused with OsCAF1B, OsCAF1G, and OsCAF1H, respectively, fluorescent spots were observed in the nucleolus. OsCAF1B fluorescent fusion proteins were located in discrete cytoplasmic foci and fibers. We present evidences that OsCAF1B colocalizes with AtXRN4, a processing body marker, and AtKSS12, a microtubules maker, indicating that OsCAF1B is a component of the plant P-body and associate with microtubules. Our findings provide biochemical evidence that OsCAF1 proteins may be involved in the deadenylation in rice. The unique expression patterns of each OsCAF1 were observed in various tissues when undergoing abiotic stress treatments, implying that each CAF1 gene in rice plays a specific role in the development and stress response of a plant.

Collaboration


Dive into the Li-Fen Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin-Lon Ho

National Chiayi University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaw-Jye Wu

National Central University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ching-Hui Yeh

National Central University

View shared research outputs
Top Co-Authors

Avatar

Chun-Kai Huang

National Central University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsin-Yi Liu

National Central University

View shared research outputs
Researchain Logo
Decentralizing Knowledge