Shaw-Jye Wu
National Central University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shaw-Jye Wu.
Nature Biotechnology | 2003
Huazhong Shi; Byeong-ha Lee; Shaw-Jye Wu; Jian-Kang Zhu
High concentrations of Na+ in saline soils inhibit plant growth and reduce agricultural productivity. We report here that CaMV 35S promoter driven overexpression of the Arabidopsis thaliana SOS1 gene, which encodes a plasma membrane Na+/H+ antiporter, improves plant salt tolerance in A. thaliana. Transgenic plants showed substantial upregulation of SOS1 transcript levels upon NaCl treatment, suggesting post-transcriptional control of SOS1 transcript accumulation. In response to NaCl treatment, transgenic plants overexpressing SOS1 accumulated less Na+ in the xylem transpirational stream and in the shoot. Undifferentiated callus cultures regenerated from the transgenic plants were also more tolerant of salt stress, which was correlated with reduced Na+ content in the transgenic cells. These results show that improved salt tolerance could be achieved by limiting Na+ accumulation in plant cells.
The Plant Cell | 1996
Shaw-Jye Wu; Lei Ding; Jian-Kang Zhu
To begin to determine which genes are essential for salt tolerance in higher plants, we identified four salt-hypersensitive mutants of Arabidopsis by using a root-bending assay on NaCl-containing agar plates. These mutants (sos1-1, sos1-2, sos1-3, and sos1-4) are allelic to each other and were caused by single recessive nuclear mutations. The SOS1 gene was mapped to chromosome 2 at 29.5 [plusmn] 6.1 centimorgans. The mutants showed no phenotypic changes except that their growth was >20 times more sensitive to inhibition by NaCl. Salt hypersensitivity is a basic cellular trait exhibited by the mutants at all developmental stages. The sos1 mutants are specifically hypersensitive to Na+ and Li+. The mutants were unable to grow on media containing low levels (below ~1 mM) of potassium. Uptake experiments using 86Rb showed that sos1 mutants are defective in high-affinity potassium uptake. sos1 plants became deficient in potassium when treated with NaCl. The results demonstrate that potassium acquisition is a critical process for salt tolerance in glycophytic plants.
Enzyme and Microbial Technology | 2001
Shu-Yi Wang; Anne-Laure Moyne; George Thottappilly; Shaw-Jye Wu; Robert D. Locy; Narendra K. Singh
Five extracellular chitinases of Bacillus cereus 6E1 were detected by a novel in-gel chitinase assay using carboxymethyl-chitin-remazol brilliant violet 5R (CM-chitin-RBV) as a substrate. The major chitinase activity was associated with a 36-kDa (Chi36) gel band. Chi36 was purified by a one-step, native gel purification procedure derived from the new in-gel chitinase assay. The purified Chi36 has optimal activity at pH 5.8 and retains some enzymatic activity between pH 2.5-8. The temperature optimum for Chi36 was 35 degrees C, but the enzyme was active between 4-70 degrees C. Based on its ability to hydrolyze mainly p-nitrophenyl-(N-acetyl-beta-D-glucosaminide)(2), Chi36 is characterized as a chitobiosidase, a type of exochitinase. The N-terminal amino acid sequence of mature Chi36 was determined (25 amino acids). Alanine is the first N-terminal amino acid residue indicating the cleavage of a signal peptide from a Chi36 precursor to form the mature extracellular Chi36. The N-terminal sequence of Chi36 demonstrated highest similarity with Bacillus circulans WL-12 chitinase D and significant similarity with several other bacterial chitinases.
Plant and Cell Physiology | 2010
Chun-Kai Huang; Li-Fen Huang; Jin-Ji Huang; Shaw-Jye Wu; Ching-Hui Yeh; Chung-An Lu
DEAD-box RNA helicases are involved in RNA metabolism, including pre-mRNA splicing, ribosome biogenesis, RNA decay and gene expression. In this study, we identified a homolog of the RH36 gene, AtRH36, which encodes a DEAD-box protein in Arabidopsis thaliana. The gene was expressed ubiquitously throughout the plant. The AtRH36 fused to green fluorescent protein was localized in the nucleus. Homozygosity for the Arabidopsis atrh36 mutants, atrh36-1 and atrh36-2, could not be obtained. Progeny of selfed Arabidopsis atrh36 heterozygote plants were obtained at a heterozygote to wild-type ratio of 1 : 1, which suggested that the AtRH36 gene was involved in gametogenesis. Therefore, we performed a reciprocal cross to determine whether AtRH36 was involved in female gametophyte development. Female gametogenesis was delayed in atrh36-1, and asynchronous development of the female gametophytes was found within a single pistil. Knock-down of AtRH36 gave a pleiotropic phenotype and led to the accumulation of unprocessed 18S pre-rRNA. These results suggest that AtRH36 is essential for mitotic division during female gametogenesis and plays an important role in rRNA biogenesis in Arabidopsis.
Planta | 2006
Chai-Fong Lee; Hsin-Yi Pu; Lian-Chin Wang; Ronald J. Sayler; Ching-Hui Yeh; Shaw-Jye Wu
Previously, the growth of Arabidopsis hit1-1 (heat-intolerant) mutant was found to be inhibited by both heat and water stress (Wu et al. in J Plant Physiol 157:543–547, 2000). In order to determine the genetic mutation underlying the hit1-1 phenotype, map-based cloning of HIT1 gene was conducted. Transformation of the hit1-1 mutant with a HIT1 cDNA clone reverts the mutant to the heat tolerance phenotype, confirming the identity of HIT1. Sequence analysis revealed the HIT1 gene encodes a protein of 829 amino acid residues and is homologous to yeast (Saccharomyces cerevisiae) Vps53p protein. The yeast Vps53p protein has been shown to be a tethering factor that associates with Vps52p and Vps54p in a complex formation involved in the retrograde trafficking of vesicles to the late Golgi. An Arabidopsis homolog of yeast Vps52p has previously been identified and mutation of either the homolog or HIT1 by T-DNA insertion resulted in a male-specific transmission defect. The growth of yeast vps53Δ null mutant also shows reduced thermotolerance, and expression of HIT1 in this mutant can partially complement the defect, supporting the possibility of a conserved biological function for Vps53p and HIT1. Collectively, the hit1-1 is the first mutant in higher plant linking a homolog of the vesicle tethering factor to both heat and osmotic stress tolerance.
Journal of Experimental Botany | 2011
Lian-Chin Wang; Ming-Chieh Tsai; Kai-Yu Chang; Yu-Shan Fan; Ching-Hui Yeh; Shaw-Jye Wu
Arabidopsis thaliana hit1-1 is a heat-intolerant mutant. The HIT1 gene encodes a protein that is homologous to yeast Vps53p, which is a subunit of the Golgi-associated retrograde protein (GARP) complex that is involved in retrograde membrane trafficking to the Golgi. To investigate the correlation between the cellular role of HIT1 and its protective function in heat tolerance in plants, it was verified that HIT1 was co-localized with AtVPS52 and AtVPS54, the other putative subunits of GARP, in the Golgi and post-Golgi compartments in Arabidopsis protoplasts. A bimolecular fluorescence complementation assay showed that HIT1 interacted with AtVPS52 and AtVPS54, which indicated their assembly into a protein complex in vivo. Under heat stress conditions, the plasma membrane of hit1-1 was less stable than that of the wild type, as determined by an electrolyte leakage assay, and enhanced leakage occurred before peroxidation injury to the membrane. In addition, the ability of hit1-1 to survive heat stress was not influenced by exposure to light, which suggested that the heat intolerance of hit-1 was a direct outcome of reduced membrane thermostability rather than heat-induced oxidative stress. Furthermore, hit1-1 was sensitive to the duration (sustained high temperature stress at 37 °C for 3 d) but not the intensity (heat shock at 44 °C for 30 min) of exposure to heat. Collectively, these results imply that HIT1 functions in the membrane trafficking that is involved in the thermal adaptation of the plasma membrane for tolerance to long-term heat stress in plants.
New Phytologist | 2010
Shin-Jye Wu; Lian-Chin Wang; Ching-Hui Yeh; Chun-An Lu; Shaw-Jye Wu
*The Arabidopsis heat-intolerant 2 (hit2) mutant was isolated on the basis of its impaired ability to withstand moderate heat stress (37 degrees C). Determination of the genetic mutation that underlies the hit2 thermosensitive phenotype allowed better understanding of the mechanisms by which plants cope with heat stress. *Genetic analysis revealed that hit2 is a single recessive mutation. Map-based cloning was used to identify the hit2 locus. The response of hit2 to other types of heat stress was also investigated to characterize the protective role of HIT2. *hit2 was defective in basal but not in acquired thermotolerance. hit2 was sensitive to methyl viologen-induced oxidative stress, and the survival of hit2 seedlings in response to heat stress was affected by light conditions. The mutated locus was located at the EXPORTIN1A (XPO1A) gene, which encodes a nuclear transport receptor. Two T-DNA insertion lines, xpo1a-1 and xpo1a-3, exhibited the same phenotypes as hit2. *The results provide evidence that Arabidopsis XPO1A is dispensable for normal plant growth and development but is essential for thermotolerance, in part by mediating the protection of plants against heat-induced oxidative stress.
Journal of Experimental Botany | 2010
Jiahn-Chou Guan; Ching-Hui Yeh; Ya-Ping Lin; Yi-Ting Ke; Ming-Tse Chen; Jia-Wen You; Yi-Hsin Liu; Chung-An Lu; Shaw-Jye Wu; Chu-Yung Lin
In rice, the class I small heat shock protein (sHSP-CI) genes were found to be selectively induced by L-azetidine-2-carboxylic acid (AZC) on chromosome 3 but not chromosome 1. Here it is shown that a novel cis-responsive element contributed to the differential regulation. By serial deletion and computational analysis, a 9 bp putative AZC-responsive element (AZRE), GTCCTGGAC, located between nucleotides –186 and –178 relative to the transcription initiation site of Oshsp17.3 was revealed. Deletion of this putative AZRE from the promoter abolished its ability to be induced by AZC. Moreover, electrophoretic mobility shift assay (EMSA) revealed that the AZRE interacted specifically with nuclear proteins from AZC-treated rice seedlings. Two AZRE–protein complexes were detected by EMSA, one of which could be competed out by a canonical heat shock element (HSE). Deletion of the AZRE also affected the HS response. Furthermore, transient co-expression of the heat shock factor OsHsfA4b with the AZRE in the promoter of Oshsp17.3 was effective. The requirement for the putative AZRE for AZC and HS responses in transgenic Arabidopsis was also shown. Thus, AZRE represents an alternative form of heat HSE, and its interaction with canonical HSEs through heat shock factors may be required to respond to HS and AZC.
Journal of Bioscience and Bioengineering | 2001
Shu-Yi Wang; Shaw-Jye Wu; George Thottappilly; Robert D. Locy; Narendra K. Singh
The chi36 gene encoding exochitinase Chi36 was cloned from a Bacillus cereus 6E1 subgenomic library. The chi36 open reading frame is 1080 bp long encoding a Chi36 precursor protein of 360 amino acids, consisting of a 27 amino acid N-terminal signal peptide and a 333 amino acid sequence found in the mature Chi36 protein of 36.346 kDa. Chi36 shows significant amino acid sequence similarity to many bacterial chitinases, but has highest similarity to B. circulans WL-12 chitinase D. Chi36 belongs to subfamily B of bacterial chitinases in family 18 of glycosyl hydrolases. Chi36 shows a simple and compact structural organization composed of an N-terminal signal peptide and a C-terminal (beta/alpha)8-barrel catalytic domain (CaD). The Chi36 signal peptide is recognized by Escherichia coli, allowing Chi36 secretion. Chi36 is the first one-domain (CaD) bacterial chitinase cloned from B. cereus.
Plant Molecular Biology | 2014
Kuo‑Hsuan Hsu; Chia‑Chin Liu; Shaw-Jye Wu; Ying‑Yu Kuo; Chung-An Lu; Ching‑Rong Wu; Pei‑Jyun Lian; Chwan-Yang Hong; Yi‑Ting Ke; Juin‑Hua Huang; Ching-Hui Yeh
By oligo microarray expression profiling, we identified a rice RING zinc-finger protein (RZFP), OsRZFP34, whose gene expression increased with high temperature or abscisic acid (ABA) treatment. As compared with the wild type, rice and Arabidopsis with OsRZFP34 overexpression showed increased relative stomata opening even with ABA treatment. Furthermore, loss-of-function mutation of OsRZFP34 and AtRZFP34 (At5g22920), an OsRZFP34 homolog in Arabidopsis, decreased relative stomata aperture under nonstress control conditions. Expressing OsRZFP34 in atrzfp34 reverted the mutant phenotype to normal, which indicates a conserved molecular function between OsRZFP34 and AtRZFP34. Analysis of water loss and leaf temperature under stress conditions revealed a higher evaporation rate and cooling effect in OsRZFP34-overexpressing Arabidopsis and rice than the wild type, atrzfp34 and osrzfp34. Thus, stomata opening, enhanced leaf cooling, and ABA insensitivity was conserved with OsRZFP34 expression. Transcription profiling of transgenic rice overexpressing OsRZFP34 revealed many genes involved in OsRZFP34-mediated stomatal movement. Several genes upregulated or downregulated in OsRZFP34-overexpressing plants were previously implicated in Ca2+ sensing, K+ regulator, and ABA response. We suggest that OsRZFP34 may modulate these genes to control stomata opening.