Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li-Jun Wan is active.

Publication


Featured researches published by Li-Jun Wan.


Angewandte Chemie | 2013

Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects

Ya-Xia Yin; Sen Xin; Yu-Guo Guo; Li-Jun Wan

With the increasing demand for efficient and economic energy storage, Li-S batteries have become attractive candidates for the next-generation high-energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li-S batteries, this Review introduces the electrochemistry of Li-S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li-S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li-S batteries with a metallic Li-free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future.


Journal of the American Chemical Society | 2012

Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries

Sen Xin; Lin Gu; Na-Hong Zhao; Ya-Xia Yin; Long-Jie Zhou; Yu-Guo Guo; Li-Jun Wan

The lithium-sulfur battery holds a high theoretical energy density, 4-5 times that of todays lithium-ion batteries, yet its applications have been hindered by poor electronic conductivity of the sulfur cathode and, most importantly, the rapid fading of its capacity due to the formation of soluble polysulfide intermediates (Li(2)S(n), n = 4-8). Despite numerous efforts concerning this issue, combatting sulfur loss remains one of the greatest challenges. Here we show that this problem can be effectively diminished by controlling the sulfur as smaller allotropes. Metastable small sulfur molecules of S(2-4) were synthesized in the confined space of a conductive microporous carbon matrix. The confined S(2-4) as a new cathode material can totally avoid the unfavorable transition between the commonly used large S(8) and S(4)(2-). Li-S batteries based on this concept exhibit unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior rate capability, which promise a practicable battery with high energy density for applications in portable electronics, electric vehicles, and large-scale energy storage systems.


Advanced Materials | 2013

Binding SnO2 Nanocrystals in Nitrogen‐Doped Graphene Sheets as Anode Materials for Lithium‐Ion Batteries

Xiaosi Zhou; Li-Jun Wan; Yu-Guo Guo

Hybrid anode materials for Li-ion batteries are fabricated by binding SnO2 nanocrystals (NCs) in nitrogen-doped reduced graphene oxide (N-RGO) sheets by means of an in situ hydrazine monohydrate vapor reduction method. The SnO2NCs in the obtained SnO2NC@N-RGO hybrid material exhibit exceptionally high specific capacity and high rate capability. Bonds formed between graphene and SnO2 nanocrystals limit the aggregation of in situ formed Sn nanoparticles, leading to a stable hybrid anode material with long cycle life.


Journal of the American Chemical Society | 2012

Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery.

Yong-Qing Wang; Lin Gu; Yu-Guo Guo; Hong Li; Xiaoqing He; Susumu Tsukimoto; Yuichi Ikuhara; Li-Jun Wan

Well-defined Li(4)Ti(5)O(12) nanosheets terminated with rutile-TiO(2) at the edges were synthesized by a facile solution-based method and revealed directly at atomic resolution by an advanced spherical aberration imaging technique. The rutile-TiO(2) terminated Li(4)Ti(5)O(12) nanosheets show much improved rate capability and specific capacity compared with pure Li(4)Ti(5)O(12) nanosheets when used as anode materials for lithium ion batteries. The results here give clear evidence of the utility of rutile-TiO(2) as a carbon-free coating layer to improve the kinetics of Li(4)Ti(5)O(12) toward fast lithium insertion/extraction. The carbon-free nanocoating of rutile-TiO(2) is highly effective in improving the electrochemical properties of Li(4)Ti(5)O(12), promising advanced batteries with high volumetric energy density, high surface stability, and long cycle life compared with the commonly used carbon nanocoating in electrode materials.


Accounts of Chemical Research | 2012

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries

Sen Xin; Yu-Guo Guo; Li-Jun Wan

Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting network for alloy anodes, such as Si and Ge, to accelerate electron transport, alleviate volume change, and prevent the agglomeration of active nanoparticles. Finally, we describe the power of nanocarbon networks for the next generation rechargeable lithium batteries, including Li-S, Li-O(2), and Li-organic batteries, and provide insights into the design of ideal nanocarbon networks for these devices. In addition, we address the ways in which nanocarbon networks can expand the applications of rechargeable lithium batteries into the emerging fields of stationary energy storage and transportation.


Journal of the American Chemical Society | 2016

Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe–Nx

Wen-Jie Jiang; Lin Gu; Li Li; Yun Zhang; Xing Zhang; Lin-Juan Zhang; Jian-Qiang Wang; Jin-Song Hu; Zidong Wei; Li-Jun Wan

Understanding the origin of high activity of Fe-N-C electrocatalysts in oxygen reduction reaction (ORR) is critical but still challenging for developing efficient sustainable nonprecious metal catalysts in fuel cells and metal-air batteries. Herein, we developed a new highly active Fe-N-C ORR catalyst containing Fe-N(x) coordination sites and Fe/Fe3C nanocrystals (Fe@C-FeNC), and revealed the origin of its activity by intensively investigating the composition and the structure of the catalyst and their correlations with the electrochemical performance. The detailed analyses unambiguously confirmed the coexistence of Fe/Fe3C nanocrystals and Fe-N(x) in the best catalyst. A series of designed experiments disclosed that (1) N-doped carbon substrate, Fe/Fe3C nanocrystals or Fe-N(x) themselves did not deliver the high activity; (2) the catalysts with both Fe/Fe3C nanocrystals and Fe-N(x) exhibited the high activity; (3) the higher content of Fe-N(x) gave the higher activity; (4) the removal of Fe/Fe3C nanocrystals severely degraded the activity; (5) the blocking of Fe-N(x) downgraded the activity and the recovery of the blocked Fe-N(x) recovered the activity. These facts supported that the high ORR activity of the Fe@C-FeNC electrocatalysts should be ascribed to that Fe/Fe3C nanocrystals boost the activity of Fe-N(x). The coexistence of high content of Fe-N(x) and sufficient metallic iron nanoparticles is essential for the high ORR activity. DFT calculation corroborated this conclusion by indicating that the interaction between metallic iron and Fe-N4 coordination structure favored the adsorption of oxygen molecule. These new findings open an avenue for the rational design and bottom-up synthesis of low-cost highly active ORR electrocatalysts.


Journal of the American Chemical Society | 2012

Improving the Electrode Performance of Ge through Ge@C Core–Shell Nanoparticles and Graphene Networks

Ding-Jiang Xue; Sen Xin; Yang Yan; Ke-Cheng Jiang; Ya-Xia Yin; Yu-Guo Guo; Li-Jun Wan

Germanium is a promising high-capacity anode material for lithium ion batteries, but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. A double protection strategy to improve the electrode performance of Ge through the use of Ge@C core-shell nanostructures and reduced graphene oxide (RGO) networks has been developed. The as-synthesized Ge@C/RGO nanocomposite showed excellent cycling performance and rate capability in comparison with Ge@C nanoparticles when used as an anode material for Li ion batteries, which can be attributed to the electronically conductive and elastic RGO networks in addition to the carbon shells and small particle sizes of Ge. The strategy is simple yet very effective, and because of its versatility, it may be extended to other high-capacity electrode materials with large volume variations and low electrical conductivities.


Angewandte Chemie | 2013

Space‐Confinement‐Induced Synthesis of Pyridinic‐ and Pyrrolic‐Nitrogen‐Doped Graphene for the Catalysis of Oxygen Reduction

Wei Ding; Zidong Wei; Siguo Chen; Xueqiang Qi; Tao Yang; Jin-Song Hu; Dong Wang; Li-Jun Wan; Shahnaz Fatima Alvi; Li Li

The development of high-performance and low-cost catalytic materials for the oxygen reduction reaction (ORR) has been a major challenge for the large-scale application of fuel cells. Currently, platinum and platinum-based alloys are the most efficient ORR catalysts in fuel-cell cathodes; however, they cannot meet the demand for the widespread commercialization of fuel cells because of the scarcity of platinum. Thus, the ongoing search for platinum-free catalysts for the ORR has attracted much attention. Graphene, single-layer sheets of sp-hybridized carbon atoms, has attracted tremendous attention and research interest. The abundance of free-flowing p electrons in carbon materials composed of sp-hybridized carbon atoms makes these materials potential catalysts for reactions that require electrons, such as the ORR. However, these p electrons are too inert to be used directly in the ORR. In N-doped electron-rich carbon nanostructures, carbon p electrons have been shown to be activated through conjugation with lone-pair electrons from N dopants; thus, O2 molecules are reduced on the positively charged C atoms that neighbor N atoms. Recently, Hu and co-workers found that as long as the electroneutrality of the sp-hybridized carbon atoms is broken and charged sites that favor O2 adsorption are created, these materials will be transformed into active metal-free ORR electrocatalysts regardless of whether the dopants are electron-rich (e.g., N) or electrondeficient (e.g., B). Nitrogen-doped carbon (NC) materials are considered to be promising catalysts because of their acceptable ORR activity, low cost, good durability, and environmental friendliness. However, their ORR activity is less competitive, especially in acidic media. Relative to commercial Pt/C, the difference in the half-wave potential for ORR is within 25 mV in alkaline electrolytes but is greater than 200 mV in acidic electrolytes. The activity of NC materials can be enhanced through efficient N doping with sufficient active species that favor ORR and through an increase in electrical conductivity. The annealing of graphitized carbon materials, such as carbon nanotubes and microporous carbon black, in NH3 leads to insufficient substitution of nitrogen because of the well-ordered structure of the host materials. Alternatively, the direct pyrolysis of nitrogen-containing hydrocarbons or polymers produces NC materials with good incorporation of nitrogen. However, suitable pyrolysis temperatures are difficult to pinpoint; without optimization, temperatures that are excessively low or excessively high lead to low electronic conductivity or a remarkable loss of active N species, respectively. Recently, mesoporous-alumina-assisted and silica-template-assisted nitrogen incorporation, which can preserve a high content of N in synthesized NC materials, have been reported. However the activities of the resulting NC materials in the ORR were still significantly lower than that of Pt/C, even when the N content was as high as 10.7 atm%. Among three types of N atoms, that is, pyridinic, pyrrolic, and quaternary N, only the pyridinic and pyrrolic forms, which have planar structures, have been proven to be active in the ORR. In contrast, quaternary N atoms, which possess a 3D structure, are not active in the ORR. The low electrical conductivity of NC materials with quaternary N atoms results from the interruption of their p–p conjugation by the 3D structure and is thought to be predominantly responsible for the poor catalysis. Therefore, the synthesis of NC materials with more planar pyridinic and pyrrolic N atoms and fewer quaternary N atoms is important for the preparation of ORR-active catalysts. Herein, we present a novel strategy for the selective synthesis of pyridinicand pyrrolic-nitrogen-doped graphene (NG) by the use of layered montmorillonite (MMT) as a quasi-closed flat nanoreactor, which is open only along the perimeter to enable the entrance of aniline (AN) monomer molecules. The flat MMT nanoreactor, which is less than 1 nm thick, extensively constrains the formation of quaternary N because of its 3D structure but facilitates the formation of pyridinic and pyrrolic N. Nitrogen is well-known to be incorporated into quaternary N in tetrahedral sp hybridization but incorporated into pyridinic and pyrrolic N in planar sp hybridization. The confinement effect of MMT ensures that N is incorporated into the structure and that the graphitization is successful without significant loss of N species. Furthermore, planar pyridinic and pyrrolic N can be [*] Dr. W. Ding, Prof. Z.-D. Wei, Dr. S.-G. Chen, Dr. X.-Q. Qi, Dr. T. Yang, Dr. S. F. Alvi, Dr. L. Li The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University Shapingba 174, Chongqing (China) E-mail: [email protected]


Journal of Materials Chemistry | 2010

Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries

Le-Sheng Zhang; Ling-Yan Jiang; Hui-Juan Yan; Wei D. Wang; Wei Wang; Wei-Guo Song; Yu-Guo Guo; Li-Jun Wan

A two step programmed method is developed to load mono dispersed SnO2 nanoparticles onto single layer graphene sheets. The SnO2-G composite has near mono dispersion of the SnO2 nanocrystals as well as a high SnO2 content of over 60 wt%. These outstanding features are desirable and enable the composite material to be an excellent anode material for Li-ion batteries.


Journal of the American Chemical Society | 2016

Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%

Jun Du; Zhonglin Du; Jin-Song Hu; Zhenxiao Pan; Qing Shen; Jian-Kun Sun; Donghui Long; Hui Dong; Litao Sun; Xinhua Zhong; Li-Jun Wan

The enhancement of power conversion efficiency (PCE) and the development of toxic Cd-, Pb-free quantum dots (QDs) are critical for the prosperity of QD-based solar cells. It is known that the properties (such as light harvesting range, band gap alignment, density of trap state defects, etc.) of QD light harvesters play a crucial effect on the photovoltaic performance of QD based solar cells. Herein, high quality ∼4 nm Cd-, Pb-free Zn-Cu-In-Se alloyed QDs with an absorption onset extending to ∼1000 nm were developed as effective light harvesters to construct quantum dot sensitized solar cells (QDSCs). Due to the small particle size, the developed QD sensitizer can be efficiently immobilized on TiO2 film electrode in less than 0.5 h. An average PCE of 11.66% and a certified PCE of 11.61% have been demonstrated in the QDSCs based on these Zn-Cu-In-Se QDs. The remarkably improved photovoltaic performance for Zn-Cu-In-Se QDSCs vs Cu-In-Se QDSCs (11.66% vs 9.54% in PCE) is mainly derived from the higher conduction band edge, which favors the photogenerated electron extraction and results in higher photocurrent, and the alloyed structure of Zn-Cu-In-Se QD light harvester, which benefits the suppression of charge recombination at photoanode/electrolyte interfaces and thus improves the photovoltage.

Collaboration


Dive into the Li-Jun Wan's collaboration.

Top Co-Authors

Avatar

Yu-Guo Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunli Bai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin-Song Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chen Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ya-Xia Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui-Juan Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ting Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

An-Min Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei-Guo Song

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge