Li-Kiang Tan
National Environment Agency
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Li-Kiang Tan.
Emerging Infectious Diseases | 2009
Lee Ching Ng; Li-Kiang Tan; Cheong-Huat Tan; Sharon S.Y. Tan; Hapuarachchige Chanditha Hapuarachchi; Kwoon-Yong Pok; Yee-Ling Lai; Sai-Gek Lam-Phua; Göran Bucht; Raymond T.P. Lin; Yee-Sin Leo; Boon-Hian Tan; Hwi-Kwang Han; Peng-Lim Ooi; Lyn James; Seow-Poh Khoo
Data from longitudinal analyses can be useful in the design and implementation of control strategies.
Journal of General Virology | 2010
Hapuarachchige Chanditha Hapuarachchi; K.B.A.T. Bandara; S.D. Sumanadasa; Hapugoda; Yee-Ling Lai; K.S. Lee; Li-Kiang Tan; R.T. Lin; L.F. Ng; G. Bucht; W. Abeyewickreme; Lee Ching Ng
Chikungunya fever swept across many South and South-east Asian countries, following extensive outbreaks in the Indian Ocean Islands in 2005. However, molecular epidemiological data to explain the recent spread and evolution of Chikungunya virus (CHIKV) in the Asian region are still limited. This study describes the genetic Characteristics and evolutionary relationships of CHIKV strains that emerged in Sri Lanka and Singapore during 2006-2008. The viruses isolated in Singapore also included those imported from the Maldives (n=1), India (n=2) and Malaysia (n=31). All analysed strains belonged to the East, Central and South African (ECSA) lineage and were evolutionarily more related to Indian than to Indian Ocean Islands strains. Unique genetic characteristics revealed five genetically distinct subpopulations of CHIKV in Sri Lanka and Singapore, which were likely to have emerged through multiple, independent introductions. The evolutionary network based on E1 gene sequences indicated the acquisition of an alanine to valine 226 substitution (E1-A226V) by virus strains of the Indian sublineage as a key evolutionary event that contributed to the transmission and spatial distribution of CHIKV in the region. The E1-A226V substitution was found in 95.7 % (133/139) of analysed isolates in 2008, highlighting the widespread establishment of mutated CHIKV strains in Sri Lanka, Singapore and Malaysia. As the E1-A226V substitution is known to enhance the transmissibility of CHIKV by Aedes albopictus mosquitoes, this observation has important implications for the design of vector control strategies to fight the virus in regions at risk of chikungunya fever.
Infection, Genetics and Evolution | 2012
Kim-Sung Lee; Sharon Lo; Sharon W. S. Tan; Rachel Chua; Li-Kiang Tan; Helen Xu; Lee Ching Ng
Dengue fever, a vector-borne disease, has caused tremendous burden to countries in the tropics and sub tropics. Over the past 20 years, dengue epidemics have become more widespread, severe and frequent. This study aims to understand the dynamics of dengue viruses in cosmopolitan Singapore. Envelope protein gene sequences of all four dengue serotypes (DENV-1-DENV-4) obtained from human sera in Singapore (2008-2010) revealed that constant viral introductions and in situ evolution contribute to viral diversity in Singapore and play important roles in shaping the epidemiology of dengue in the island state. The diversity of dengue viruses reported here could be a reflection of the on-going dengue situation in the region given Singapores location in a dengue hyperendemic region and its role as the regional hub for travels and trade. Though cosmopolitan genotype of DENV-2 has remained as the predominant strain circulating in Singapore, we uncovered evidence of in situ evolution which could possibly result in viruses with improved fitness. While we have previously shown that a switch in the predominant dengue serotype could serve as a warning for an impending outbreak, our current data shows that a replacement of a predominant viral clade, even in the absence of a switch in predominant serotype, could signal a possible increase in dengue transmission. The circulating dengue viruses in Singapore are highly diverse, a situation which could offer ample opportunities for selection of strains of higher fitness, thus increasing the risk of outbreaks despite a low Aedes population.
PLOS Neglected Tropical Diseases | 2010
Grace Yap; Kwoon-Yong Pok; Yee-Ling Lai; Hapuarachchige-Chanditha Hapuarachchi; Angela Chow; Yee-Sin Leo; Li-Kiang Tan; Lee Ching Ng
Background The sensitivity and specificity of two in-house MAC-ELISA assays were tested and compared with the performance of commercially-available CTK lateral flow rapid test and EUROIMMUN IFA assays for the detection of anti-Chikungunya virus (CHIKV) IgM. Each MAC-ELISA assay used a whole virus-based antigen derived from genetically distinct CHIKV strains involved in two chikungunya disease outbreaks in Singapore (2008); a January outbreak strain with alanine at amino acid residue 226 of the E1 glycoprotein (CHIKV-A226) and a May-to-September outbreak strain that possessed valine at the same residue (CHIKV-226V). We report differences in IgM detection efficacy of different assays between the two outbreaks. The sensitivities of two PCR protocols were also tested. Methods and Findings For sera from January outbreak, the average detection threshold of CTK lateral flow test, MAC-ELISAs and EUROIMMUN IFA assays was 3.75, 4.38 and 4.88 days post fever onset respectively. In contrast, IgM detection using CTK lateral flow test was delayed to more than 7 days after fever onset in the second outbreak sera. However, MAC-ELISA using CHIKV-226V detected IgM in the second outbreak sera 3.96 days after fever onset, which was approximately one day earlier compared to the same assay using CHIKV-A226 (4.86 days). Specificity was 100% for both commercial assays, and 95.6% for the in-house MAC-ELISAs. For sensitivity determination of the PCR protocols, the probe-based real time RT-PCR method was found to be 10 times more sensitive than one based on SYBR Green. Conclusion Our findings suggested that the two strains of CHIKV using variants A226 and 226V resulted in variation in sensitivities of the assays evaluated. We postulated that the observed difference in antigen efficacy could be due to the amino acid substitution differences in viral E1 and E2 envelope proteins, especially the E1-A226V substitution. This evaluation demonstrates the importance of appraisal of different diagnostic assays before their application in clinical and operational settings.
PLOS ONE | 2014
Victor C. Gan; Li-Kiang Tan; David C. Lye; Kwoon-Yong Pok; Shi-Qi Mok; Rachel Chua; Yee-Sin Leo; Lee Ching Ng
WHO recommendations for dengue diagnosis require laboratory facilities. Antibody-based rapid diagnostic tests (RDTs) have performed poorly, and clinical diagnosis remains the mainstay in dengue-endemic countries. We evaluated a combination antigen-antibody RDT for point-of-care testing in a high-prevalence setting. In this prospective cohort study, adults were enrolled from a tertiary infectious disease centre for evaluation of undifferentiated febrile illness from October 2011 to May 2012. SD Bioline Dengue Duo was evaluated at point-of-care against a WHO-based reference standard of viral isolation, RT-PCR, NS1-, IgM-, and IgG-ELISA. 246 adults were enrolled (median age 34 years, range 18–69), of which 197 could be confirmed definitively as either dengue or non-dengue. DENV-2 was the predominant serotype (79.5%) and the ratio of primary to secondary cases was 1∶1.1. There were no test failures and minimal interobserver variation with a Fleiss’ kappa of 0.983 (95% CI 0.827–1.00). Overall sensitivity and specificity were 93.9% (95% CI 88.8–96.8%) and 92.0% (95% CI 81.2–96.9%) respectively. Using WHO clinical criteria alone for diagnosis had similar sensitivities (95.9%, 95% CI 91.4–98.1%) and lower specificities (20.0%, 95% CI 11.2–33.0%). No significant difference in performance was found when testing early versus late presenters, primary versus secondary cases, or DENV-1 versus DENV-2 infections. The use of a combination RDT fulfills WHO ASSURED criteria for point-of-care testing and can enhance dengue diagnosis in an endemic setting. This has the potential to markedly improve clinical management of dengue in the field.
American Journal of Tropical Medicine and Hygiene | 2015
Chee-Fu Yung; Kim-Sung Lee; Tun-Linn Thein; Li-Kiang Tan; Victor C. Gan; Joshua G. X. Wong; David C. Lye; Lee Ching Ng; Yee-Sin Leo
Studies on serotype-specific features of dengue and disease severity on adults are limited. We prospectively recruited adult febrile patients without alternate diagnosis to dengue from April 2005 to December 2011. Outcomes were defined using both the World Health Organization (WHO) 1997 and 2009 criteria; Dengue hemorrhagic fever (DHF) and severe dengue (SD). Infecting serotype was identified in 469 dengue-confirmed patients comprising 22.0% dengue virus serotype 1 (DENV-1), 57.1% DENV-2, 17.1% DENV-3, and 3.8% DENV-4. Cases infected with DENV-1 were more likely to present with red eyes whereas presence of joint pain and lower platelet count was associated with DENV-2 cases. After adjusting for potential confounders, DENV-1 was associated with both DHF (adjusted Relative Risk [aRR] = 1.74) and SD (aRR = 2.1) whereas DENV-2 had a lower risk of DHF (aRR = 0.5). DENV-1 genotype 1 and DENV-2 cosmopolitan were the predominant genotypes identified. Infecting dengue serotype and possibly genotype may play an important role in disease severity among adult dengue patients in Singapore.
American Journal of Tropical Medicine and Hygiene | 2015
Swee-Ling Low; Sally Lam; Wing-Yan Wong; Diana Teo; Lee Ching Ng; Li-Kiang Tan
Routine national notifications of dengue cases typically do not reflect the true dengue situation due to large proportion of unreported cases. Serosurveys, when conducted periodically, could shed light on the true dengue infections in the population. To determine the magnitude of dengue infections of the adult population in Singapore following the outbreak in 2007, we performed a cross-sectional study on blood donor samples from December 2009 to February 2010. The residual blood of 3,995 donors (aged 16–60 years) was screened for the presence of dengue-specific immunoglobulin G (IgG) and IgM using enzyme-linked immunosorbent assay (ELISA) kits. The age-weighted IgG prevalence of residents was 50.8% (N = 3,627, 95% confidence interval [CI] = 49.4–52.3%). Dengue IgG prevalence increased with age, with the lowest in 16–20 years age group (16.1%) and the highest in 56–60 years age group (86.6%). Plaque reduction neutralization test (PRNT) on samples of young resident adults (aged 16–30 years) revealed lower prevalence of neutralizing antibodies to each serotype, ranging from 5.4% to 20.3% compared with the older age groups. The level of exposure to dengue among the young adults is relatively low despite the endemicity of the disease in Singapore. It partially explains the population’s susceptibility to explosive outbreaks and the high incidence rate among young adults.
Journal of Clinical Virology | 2013
Hapuarachchige Chanditha Hapuarachchi; Helen M. L. Oh; Tun Linn Thein; Kwoon-Yong Pok; Yee-Ling Lai; Li-Kiang Tan; Kim-Sung Lee; Yee-Sin Leo; Lee Ching Ng
Neurological manifestations due to Dengue virus (DENV) infection are atypical and uncommon. Genomic information of clinically characterised, neurotrophic DENV in humans is extremely limited albeit their importance in deciphering the pathogenicity is substantial. Here, we report a rare case of fatal DENV-4 infection complicated with encephalitis and multi-organ failure. The clinical presentation was unusual due to its rapid onset of encephalitis despite a very low virus titre. Full genomes of serum and CSF-derived viruses shared 99.99% similarity, indicating the virus dissemination across blood-brain barrier. Even though virus genomes did not reveal any of the neurotrophic substitutions of DENV documented so far, case isolates possessed a combination of 8 novel amino acid alterations, predominantly distributed in non-structural genes of DENV-4.
Journal of Virological Methods | 2014
Pankaj Kumar; Kwoon-Yong Pok; Li-Kiang Tan; Chow Angela; Yee-Sin Leo; Lee Ching Ng
Population-based serosurveillance studies provide critical estimates on community-level immunity and the potential for future outbreaks. Currently, serological assays, such as IgG enzyme-linked immunosorbent assays (ELISAs) and indirect immunofluorescence tests (IIFT) based on the inactivated whole virus are used to determine past Chikungunya virus (CHIKV) infection. However, these commercially available tests have variable sensitivities. To develop and evaluate recombinant based CHIKV-specific IgG antibody capture ELISAs (GAC-ELISAs), baculoviruses carrying wild-type (E1-A226, named WT) or mutant (E1-A226V, named MUT) E1 envelope protein genes of CHIKV were generated. The seroreactivity of recombinant CHIKV WT and MUT envelope proteins were determined using residual blood, collected from CHIKV-confirmed patients. The sensitivities of both recombinant CHIKV envelope proteins were 83.0% as measured by GAC-ELISAs. The specificities of both recombinant proteins were 87.8%. These GAC-ELISAs were also able to detect the persistence of anti-CHIKV IgG antibodies up to 6 months after the disease onset, together with rise in sensitivities with increasing time. These results suggest that the baculovirus purified recombinant CHIKV envelope proteins react with anti-CHIKV IgG antibodies and may be useful in population-based seroprevalence surveys. In addition, these GAC-ELISAs offer good diagnostic value to determine the recent/past CHIKV infection status in non-endemic populations.
International Journal of Infectious Diseases | 2012
Li-Kiang Tan; S.L. Low; S. Lam; D. Teo; Lee Ching Ng