Liam C. Palmer
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liam C. Palmer.
Chemical Reviews | 2008
Liam C. Palmer; Christina J. Newcomb; Stuart R. Kaltz; Erik D. Spoerke; Samuel I. Stupp
1.1. Biomineralization The study of biomineralization is not only important to gain an understanding of how mineral-rich tissues are created in vivo but also because it is a great source of inspiration for the design of advanced materials.1-7 Mineralized tissues have remarkable hierarchical structures that have evolved over time to achieve great functions in a large variety of organisms. Organic phases play a key role in templating the structure of mineralized tissues; therefore, their matrices are often hybrid in composition, varying widely in the relative content of organic and inorganic substances. Understanding the complex integration of hard and soft phases that biology achieves in mineralized matrices across scales and its link to properties is knowledge of great value to materials chemistry. At the same time, the synthetic mechanisms used by biology to create mineralized matrices could also offer some useful strategies to create synthetic hybrid materials. Often, the amount of organic material utilized by Nature to modify mechanical properties of mineralized structures is vanishingly small. One example is the role of occluded proteins in the toughness of biogenic calcite.8 The study of mammalian bone and teeth in the biomineralization and biomimetic context is particularly interesting since the information derived could contribute a significant biomedical impact on therapies and strategies to repair or regenerate human mineralized tissues. This is an important area given the continually rising average life span of humans. The materials of interest could be highly sophisticated bioactive scaffolds to regenerate bone and possibly dental tissues as well. This review focuses on the formation of hydroxyapatite (HA) in synthetic systems designed primarily in the biomimetic context of bone or enamel mineralization for therapeutic approaches in repair of human tissues. Bone and enamel share the same mineral composition, HA, but have different morphologies and organic content. Enamel is almost entirely inorganic in composition, and bone has a relatively high organic composition. Knowledge acquired in this field may inspire the chemical synthesis of novel hybrid materials, including apatite-based structures for the regeneration of human bone and dental tissues.
Accounts of Chemical Research | 2008
Liam C. Palmer; Samuel I. Stupp
Self-assembly of small molecules into one-dimensional nanostructures offers many potential applications in electronically and biologically active materials. The recent advances discussed in this Account demonstrate how researchers can use the fundamental principles of supramolecular chemistry to craft the size, shape, and internal structure of nanoscale objects. In each system described here, we used atomic force microscopy (AFM) and transmission electron microscopy (TEM) to study the assembly morphology. Circular dichroism, nuclear magnetic resonance, infrared, and optical spectroscopy provided additional information about the self-assembly behavior in solution at the molecular level. Dendron rod-coil molecules self-assemble into flat or helical ribbons. They can incorporate electronically conductive groups and can be mineralized with inorganic semiconductors. To understand the relative importance of each segment in forming the supramolecular structure, we synthetically modified the dendron, rod, and coil portions. The self-assembly depended on the generation number of the dendron, the number of hydrogen-bonding functions, and the length of the rod and coil segments. We formed chiral helices using a dendron-rod-coil molecule prepared from an enantiomerically enriched coil. Because helical nanostructures are important targets for use in biomaterials, nonlinear optics, and stereoselective catalysis, researchers would like to precisely control their shape and size. Tripeptide-containing peptide lipid molecules assemble into straight or twisted nanofibers in organic solvents. As seen by AFM, the sterics of bulky end groups can tune the helical pitch of these peptide lipid nanofibers in organic solvents. Furthermore, we demonstrated the potential for pitch control using trans-to-cis photoisomerization of a terminal azobenzene group. Other molecules called peptide amphiphiles (PAs) are known to assemble in water into cylindrical nanostructures that appear as nanofiber bundles. Surprisingly, TEM of a PA substituted by a nitrobenzyl group revealed assembly into quadruple helical fibers with a braided morphology. Upon photocleavage of this the nitrobenzyl group, the helices transform into single cylindrical nanofibers. Finally, inspired by the tobacco mosaic virus, we used a dumbbell-shaped, oligo(phenylene ethynylene) template to control the length of a PA nanofiber self-assembly (<10 nm). AFM showed complete disappearance of long nanofibers in the presence of this rigid-rod template. Results from quick-freeze/deep-etch TEM and dynamic light scattering demonstrated the templating behavior in aqueous solution. This strategy could provide a general method to control size the length of nonspherical supramolecular nanostructures.
Nature Materials | 2010
Shuming Zhang; Megan Greenfield; Alvaro Mata; Liam C. Palmer; Ronit Bitton; Jason R. Mantei; Conrado Aparicio; Monica Olvera de la Cruz; Samuel I. Stupp
Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks upon cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.
Nature Chemistry | 2014
Adam S. Weingarten; Roman V. Kazantsev; Liam C. Palmer; Mark T. McClendon; Andrew R. Koltonow; Amanda P. S. Samuel; Derek J. Kiebala; Michael R. Wasielewski; Samuel I. Stupp
Integration into a soft material of all the molecular components necessary to generate storable fuels is an interesting target in supramolecular chemistry. The concept is inspired by the internal structure of photosynthetic organelles, such as plant chloroplasts, which colocalize molecules involved in light absorption, charge transport and catalysis to create chemical bonds using light energy. We report here on the light-driven production of hydrogen inside a hydrogel scaffold built by the supramolecular self-assembly of a perylene monoimide amphiphile. The charged ribbons formed can electrostatically attract a nickel-based catalyst, and electrolyte screening promotes gelation. We found the emergent phenomenon that screening by the catalyst or the electrolytes led to two-dimensional crystallization of the chromophore assemblies and enhanced the electronic coupling among the molecules. Photocatalytic production of hydrogen is observed in the three-dimensional environment of the hydrogel scaffold and the material is easily placed on surfaces or in the pores of solid supports.
Nature Materials | 2016
Faifan Tantakitti; Job Boekhoven; Xin Wang; Roman V. Kazantsev; Tao Yu; Jiahe Li; Ellen Zhuang; Roya Zandi; Julia H. Ortony; Christina J. Newcomb; Liam C. Palmer; Gajendra Shekhawat; Monica Olvera de la Cruz; George C. Schatz; Samuel I. Stupp
By means of two supramolecular systems - peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps - we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, function and energy landscape are linked, superseding the more traditional connection between molecular design and function.
Philosophical Transactions of the Royal Society A | 2007
Liam C. Palmer; Yuri S. Velichko; Monica Olvera de la Cruz; Samuel I. Stupp
Small-molecule self-assembly has proven to be a rich field for the controlled synthesis of supramolecular objects with the size scale of polymers and interesting properties. Using several recent examples from our laboratory, we discuss the development of chemical structure codes for supramolecular self-assembly objects with defined shapes. The resulting materials formed by these objects are promising for electronic functions and biological functions for regenerative medicine.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Tamar Evan-Salem; Inbal Baruch; Liat Avram; Yoram Cohen; Liam C. Palmer; Julius Rebek
The host–guest complexes of resorcin[4]arenes with small molecules in organic solutions are examined using modern NMR spectroscopic methods. The complexation of glutaric acid and β-methyl d-glucopyranoside in chloroform were investigated through 2D COSY, 2D NOESY, 1D NOE, and diffusion-ordered NMR spectroscopy (DOSY) techniques. These methods indicate that the complex is a self-assembled capsule composed of six resorcinarenes that surround six guest molecules of glutaric acid or three molecules of β-methyl d-glucopyranoside inside. The multiplicity of guest proton signals shows that the capsule provides an asymmetric magnetic environment that persists on the 1H NMR time scale. The encapsulation of these guests and common solvents suggests that the phenomenon of reversible encapsulation in chemistry may be a century old.
Nature Materials | 2014
Julia H. Ortony; Christina J. Newcomb; John B. Matson; Liam C. Palmer; Peter E. Doan; Brian M. Hoffman; Samuel I. Stupp
A large variety of functional self-assembled supramolecular nanostructures have been reported over recent decades.1 The experimental approach to these systems initially focused on the design of molecules for specific interactions that lead to discrete geometric structures.1–4 Recently, kinetics and mechanistic pathways of self-assembly have been investigated,6,7 but there remains a major gap in our understanding of internal conformational dynamics and their links to function. This challenge has been addressed through computational chemistry with the introduction of molecular dynamics (MD) simulations, which yield information on molecular fluctuations over time.5–7 Experimentally, it has been difficult to obtain analogous data with sub-nanometer spatial resolution. Thus, there is a need for experimental dynamics measurements, to confirm and guide computational efforts and to gain insight into the internal motion in supramolecular assemblies. Using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy, we measured conformational dynamics through the 6.7 nm cross-section of a self-assembled nanofiber in water and provide unique insight for the design of supramolecular functional materials.
Journal of the American Chemical Society | 2008
Steve R. Bull; Liam C. Palmer; Nathaniel J. Fry; Megan Greenfield; Benjamin W. Messmore; Thomas J. Meade; Samuel I. Stupp
The precise structural control is known for self-assembly into closed spherical structures (e.g., micelles), but similar control of open structures is much more challenging. Inspired by natural tobacco mosaic virus, we present the use of a rigid-rod template to control the size of a one-dimensional self-assembly. We believe that this strategy is novel for organic self-assembly and should provide a general approach to controlling size and dimension.
Journal of the American Chemical Society | 2012
H. Christopher Fry; Jamie M. Garcia; Matthew J. Medina; Ulises M. Ricoy; David J. Gosztola; Maxim P. Nikiforov; Liam C. Palmer; Samuel I. Stupp
Long fibers assembled from peptide amphiphiles capable of binding the metalloporphyrin zinc protoporphyrin IX ((PPIX)Zn) have been synthesized. Rational peptide design was employed to generate a peptide, c16-AHL(3)K(3)-CO(2)H, capable of forming a β-sheet structure that propagates into larger fibrous structures. A porphyrin-binding site, a single histidine, was engineered into the peptide sequence in order to bind (PPIX)Zn to provide photophysical functionality. The resulting system indicates control from the molecular level to the macromolecular level with a high order of porphyrin organization. UV/visible and circular dichroism spectroscopies were employed to detail molecular organization, whereas electron microscopy and atomic force microscopy aided in macromolecular characterization. Preliminary picosecond transient absorption data are also reported. Reduced hemin, (PPIX)Fe(II), was also employed to highlight the materials versatility and tunability.