Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Monica Olvera de la Cruz is active.

Publication


Featured researches published by Monica Olvera de la Cruz.


Nature Materials | 2010

A self-assembly pathway to aligned monodomain gels

Shuming Zhang; Megan Greenfield; Alvaro Mata; Liam C. Palmer; Ronit Bitton; Jason R. Mantei; Conrado Aparicio; Monica Olvera de la Cruz; Samuel I. Stupp

Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks upon cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.


Nature | 2014

DNA-mediated nanoparticle crystallization into Wulff polyhedra

Evelyn Auyeung; Ting I. N. G. Li; Andrew J. Senesi; Abrin L. Schmucker; Bridget C. Pals; Monica Olvera de la Cruz; Chad A. Mirkin

Crystallization is a fundamental and ubiquitous process much studied over the centuries. But although the crystallization of atoms is fairly well understood, it remains challenging to predict reliably the outcome of molecular crystallization processes that are complicated by various molecular interactions and solvent involvement. This difficulty also applies to nanoparticles: high-quality three-dimensional crystals are mostly produced using drying and sedimentation techniques that are often impossible to rationalize and control to give a desired crystal symmetry, lattice spacing and habit (crystal shape). In principle, DNA-mediated assembly of nanoparticles offers an ideal opportunity for studying nanoparticle crystallization: a well-defined set of rules have been developed to target desired lattice symmetries and lattice constants, and the occurrence of features such as grain boundaries and twinning in DNA superlattices and traditional crystals comprised of molecular or atomic building blocks suggests that similar principles govern their crystallization. But the presence of charged biomolecules, interparticle spacings of tens of nanometres, and the realization so far of only polycrystalline DNA-interconnected nanoparticle superlattices, all suggest that DNA-guided crystallization may differ from traditional crystal growth. Here we show that very slow cooling, over several days, of solutions of complementary-DNA-modified nanoparticles through the melting temperature of the system gives the thermodynamic product with a specific and uniform crystal habit. We find that our nanoparticle assemblies have the Wulff equilibrium crystal structure that is predicted from theoretical considerations and molecular dynamics simulations, thus establishing that DNA hybridization can direct nanoparticle assembly along a pathway that mimics atomic crystallization.


Journal of Physical Chemistry B | 2008

Molecular Simulation Study of Peptide Amphiphile Self-Assembly

Yuri S. Velichko; Samuel I. Stupp; Monica Olvera de la Cruz

We study the self-assembly of peptide amphiphile (PA) molecules, which is governed by hydrophobic interactions between alkyl tails and a network of hydrogen bonds between peptide blocks. We demonstrate that the interplay between these two interactions results in the formation of assemblies of different morphology, in particular, single beta-sheets connected laterally by hydrogen bonds, stacks of parallel beta-sheets, spherical micelles, micelles with beta-sheets in the corona, and long cylindrical fibers. We characterize the size distribution of the aggregates as a function of the molecular interactions. Our results suggest that the formation of nanofibers of peptide amphiphiles obeys an open association model, which resembles living polymerization.


Langmuir | 2010

Tunable mechanics of peptide nanofiber gels.

Megan Greenfield; Jessica R. Hoffman; Monica Olvera de la Cruz; Samuel I. Stupp

The mechanical properties of self-assembled fibrillar networks are influenced by the specific intermolecular interactions that modulate fiber entanglements. We investigate how changing these interactions influences the mechanics of self-assembled nanofiber gels composed of peptide amphiphile (PA) molecules. PAs developed in our laboratory self-assemble into gels of nanofibers after neutralization or salt-mediated screening of the charged residues in their peptide segment. We report here on the gelation, stiffness, and response to deformation of gels formed from a negatively charged PA and HCl or CaCl(2). Scanning electron microscopy of these gels demonstrates a similar morphology, whereas the oscillatory rheological measurements indicate that the calcium-mediated ionic bridges in CaCl(2)-PA gels form stronger intra- and interfiber cross-links than the hydrogen bonds formed by the protonated carboxylic acid residues in HCl-PA gels. As a result, CaCl(2)-PA gels can withstand higher strains than HCl-PA gels. After exposure to a series of strain sweeps with increasing strain amplitude HCl- and CaCl(2)-PA gels both recover 42% of their original stiffness. In contrast, after sustained deformation at 100% strain, HCl-PA gels recover nearly 90% of their original stiffness after 10 min, while the CaCl(2)-PA gels only recover 35%. This result suggests that the hydrogen bonds formed by the protonated acids in the HCl-PA gels allow the gel to relax quickly to its initial state, while the strong calcium cross-links in the CaCl(2)-PA gels lock in the deformed structure and inhibit the gels ability to recover. We also show that the rheological scaling behaviors of HCl- and CaCl(2)-PA gels are consistent with that of uncross- and cross-linked semiflexible biopolymer networks, respectively. The ability to modify how self-assembled fibrillar networks respond to deformations is important in developing self-assembled gels that can resist and recover from the large deformations that these gels encounter while serving as synthetic cell scaffolds in vivo.


Journal of Chemical Physics | 2000

Collapse of flexible polyelectrolytes in multivalent salt solutions

Francisco J. Solis; Monica Olvera de la Cruz

The collapse of flexible polyelectrolytes in a solution of multivalent counterions is studied by means of a two state model. The states correspond to rodlike and spherically collapsed conformations. We focus on the very dilute monomer concentration regime where the collapse transition is found to occur when the charge of the multivalent salt is comparable (but smaller) to that of the monomers. The main contribution to the free energy of the collapsed conformation is linear in the number of monomers N, since the internal state of the collapsed polymer approaches that of an amorphous ionic solid. The free energy of the rodlike state grows as N ln N, due to the electrostatic energy associated with that shape. We show that practically all multivalent counterions added to the system are condensed into the polymer chain, even before the collapse.


Journal of Chemical Physics | 1989

Microphase separation in multiblock copolymer melts

Anne M. Mayes; Monica Olvera de la Cruz

The microphase separation transition for asymmetric triblock and (A–B)m star copolymer melts is investigated following a mean‐field approach proposed by Leibler for diblock copolymer melts. Continuous transitions are found in all triblock architectures and in stars for any m at some composition fc. The phase diagram for the equilibrium morphologies is notably altered by varying the architecture of triblock copolymers.


Nature Materials | 2016

Energy landscapes and functions of supramolecular systems

Faifan Tantakitti; Job Boekhoven; Xin Wang; Roman V. Kazantsev; Tao Yu; Jiahe Li; Ellen Zhuang; Roya Zandi; Julia H. Ortony; Christina J. Newcomb; Liam C. Palmer; Gajendra Shekhawat; Monica Olvera de la Cruz; George C. Schatz; Samuel I. Stupp

By means of two supramolecular systems - peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps - we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, function and energy landscape are linked, superseding the more traditional connection between molecular design and function.


Nano Letters | 2012

Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations.

Ting I. N. G. Li; Rastko Sknepnek; Robert J. Macfarlane; Chad A. Mirkin; Monica Olvera de la Cruz

We use molecular dynamics simulations to study the crystallization of spherical nucleic-acid (SNA) gold nanoparticle conjugates, guided by sequence-specific DNA hybridization events. Binary mixtures of SNA gold nanoparticle conjugates (inorganic core diameter in the 8-15 nm range) are shown to assemble into BCC, CsCl, AlB(2), and Cr(3)Si crystalline structures, depending upon particle stoichiometry, number of immobilized strands of DNA per particle, DNA sequence length, and hydrodynamic size ratio of the conjugates involved in crystallization. These data have been used to construct phase diagrams that are in excellent agreement with experimental data from wet-laboratory studies.


Philosophical Transactions of the Royal Society A | 2007

Supramolecular self-assembly codes for functional structures

Liam C. Palmer; Yuri S. Velichko; Monica Olvera de la Cruz; Samuel I. Stupp

Small-molecule self-assembly has proven to be a rich field for the controlled synthesis of supramolecular objects with the size scale of polymers and interesting properties. Using several recent examples from our laboratory, we discuss the development of chemical structure codes for supramolecular self-assembly objects with defined shapes. The resulting materials formed by these objects are promising for electronic functions and biological functions for regenerative medicine.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions.

Mario Tagliazucchi; Monica Olvera de la Cruz; Igal Szleifer

The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.

Collaboration


Dive into the Monica Olvera de la Cruz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenwei Yao

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Liam C. Palmer

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge