Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liam J. Worrall is active.

Publication


Featured researches published by Liam J. Worrall.


Journal of the American Chemical Society | 2012

New Delhi Metallo-β-Lactamase: Structural Insights into β-Lactam Recognition and Inhibition

Dustin T. King; Liam J. Worrall; Robert Gruninger; Natalie C. J. Strynadka

The β-lactam antibiotics have long been a cornerstone for the treatment of bacterial disease. Recently, a readily transferable antibiotic resistance factor called the New Delhi metallo-β-lactamase-1 (NDM-1) has been found to confer enteric bacteria resistance to nearly all β-lactams, including the heralded carbapenems, posing a serious threat to human health. The crystal structure of NDM-1 bound to meropenem shows for the first time the molecular details of how carbapenem antibiotics are recognized by dizinc-containing metallo-β-lactamases. Additionally, product complex structures of hydrolyzed benzylpenicillin-, methicillin-, and oxacillin-bound NDM-1 have been solved to 1.8, 1.2, and 1.2 Å, respectively, and represent the highest-resolution structural data for any metallo-β-lactamase reported to date. Finally, we present the crystal structure of NDM-1 bound to the potent competitive inhibitor l-captopril, which reveals a unique binding mechanism. An analysis of the NDM-1 active site in these structures reveals key features important for the informed design of novel inhibitors of NDM-1 and other metallo-β-lactamases.


Nature Reviews Microbiology | 2017

Assembly, structure, function and regulation of type III secretion systems

Wanyin Deng; Natalie C. Marshall; Jennifer L. Rowland; James M. McCoy; Liam J. Worrall; Andrew S. Santos; Natalie C. J. Strynadka; B. Brett Finlay

Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.


Journal of Biological Chemistry | 2011

Methicillin-resistant Staphylococcus aureus (MRSA) Pyruvate Kinase as a Target for Bis-indole Alkaloids with Antibacterial Activities

Roya Zoraghi; Liam J. Worrall; Raymond H. See; Wendy Strangman; Wendy L. Popplewell; Huansheng Gong; Toufiek Samaai; Richard D. Swayze; Sukhbir Kaur; Marija Vuckovic; B. Brett Finlay; Robert C. Brunham; William R. McMaster; Michael T. Davies-Coleman; Natalie C. J. Strynadka; Raymond J. Andersen; Neil E. Reiner

Background: Methicillin-resistant Staphylococcus aureus (MRSA) PK has been recently identified as a potential novel antimicrobial drug target. Results: Screening of a marine extract library led to the identification of several bis-indole alkaloids as novel potent and selective MRSA PK inhibitors. Conclusion: These results help to understand the mechanism of the antibacterial activities of marine bis-indole alkaloids. Significance: This study provides the basis for development of potential novel antimicrobials. Novel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., McMaster, W. R., Brunham, R. C., Finlay, B. B., and Reiner, N. E. (2011) J. Proteome Res. 10, 1139–1150; Zoraghi, R., See, R. H., Axerio-Cilies, P., Kumar, N. S., Gong, H., Moreau, A., Hsing, M., Kaur, S., Swayze, R. D., Worrall, L., Amandoron, E., Lian, T., Jackson, L., Jiang, J., Thorson, L., Labriere, C., Foster, L., Brunham, R. C., McMaster, W. R., Finlay, B. B., Strynadka, N. C., Cherkasov, A., Young, R. N., and Reiner, N. E. (2011) Antimicrob. Agents Chemother. 55, 2042–2053). Screening of an extract library of marine invertebrates against MRSA PK resulted in the identification of bis-indole alkaloids of the spongotine (A), topsentin (B, D), and hamacanthin (C) classes isolated from the Topsentia pachastrelloides as novel bacterial PK inhibitors. These compounds potently and selectively inhibited both MRSA PK enzymatic activity and S. aureus growth in vitro. The most active compounds, cis-3,4-dihyrohyrohamacanthin B (C) and bromodeoxytopsentin (D), were identified as highly potent MRSA PK inhibitors (IC50 values of 16–60 nm) with at least 166-fold selectivity over human PK isoforms. These novel anti-PK natural compounds exhibited significant antibacterial activities against S. aureus, including MRSA (minimal inhibitory concentrations (MIC) of 12.5 and 6.25 μg/ml, respectively) with selectivity indices (CC50/MIC) >4. We also report the discrete structural features of the MRSA PK tetramer as determined by x-ray crystallography, which is suitable for selective targeting of the bacterial enzyme. The co-crystal structure of compound C with MRSA PK confirms that the latter is a target for bis-indole alkaloids. It elucidates the essential structural requirements for PK inhibitors in “small” interfaces that provide for tetramer rigidity and efficient catalytic activity. Our results identified a series of natural products as novel MRSA PK inhibitors, providing the basis for further development of potential novel antimicrobials.


Current Opinion in Microbiology | 2011

Structural overview of the bacterial injectisome

Liam J. Worrall; Emilie Lameignere; Natalie C. J. Strynadka

The bacterial injectisome is a specialized protein-export system utilized by many pathogenic Gram-negative bacteria for the delivery of virulence proteins into the hosts they infect. This needle-like molecular nanomachine comprises >20 proteins creating a continuous passage from bacterial to host cytoplasm. The last few years have witnessed significant progress in our understanding of the structure of the injectisome with important contributions from X-ray crystallography, NMR and EM. This review will present the current state of the structure of the injectisome with particular focus on the molecular structures of individual components and how these assemble together in a functioning T3SS.


Protein Science | 2010

Crystal structure of the C‐terminal domain of the Salmonella type III secretion system export apparatus protein InvA

Liam J. Worrall; Marija Vuckovic; Natalie C. J. Strynadka

InvA is a prominent inner‐membrane component of the Salmonella type III secretion system (T3SS) apparatus, which is responsible for regulating virulence protein export in pathogenic bacteria. InvA is made up of an N‐terminal integral membrane domain and a C‐terminal cytoplasmic domain that is proposed to form part of a docking platform for the soluble export apparatus proteins notably the T3SS ATPase InvC. Here, we report the novel crystal structure of the C‐terminal domain of Salmonella InvA which shows a compact structure composed of four subdomains. The overall structure is unique although the first and second subdomains exhibit structural similarity to the peripheral stalk of the A/V‐type ATPase and a ring building motif found in other T3SS proteins respectively.


PLOS Pathogens | 2013

A Refined Model of the Prototypical Salmonella SPI-1 T3SS Basal Body Reveals the Molecular Basis for Its Assembly.

Julien R. C. Bergeron; Liam J. Worrall; Nikolaos G. Sgourakis; Frank DiMaio; Richard A. Pfuetzner; Heather B. Felise; Marija Vuckovic; Angel C. Yu; Samuel I. Miller; David Baker; Natalie C. J. Strynadka

The T3SS injectisome is a syringe-shaped macromolecular assembly found in pathogenic Gram-negative bacteria that allows for the direct delivery of virulence effectors into host cells. It is composed of a “basal body”, a lock-nut structure spanning both bacterial membranes, and a “needle” that protrudes away from the bacterial surface. A hollow channel spans throughout the apparatus, permitting the translocation of effector proteins from the bacterial cytosol to the host plasma membrane. The basal body is composed largely of three membrane-embedded proteins that form oligomerized concentric rings. Here, we report the crystal structures of three domains of the prototypical Salmonella SPI-1 basal body, and use a new approach incorporating symmetric flexible backbone docking and EM data to produce a model for their oligomeric assembly. The obtained models, validated by biochemical and in vivo assays, reveal the molecular details of the interactions driving basal body assembly, and notably demonstrate a conserved oligomerization mechanism.


Nature | 2016

Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body

Liam J. Worrall; Chuan Hong; Marija Vuckovic; Wanyin Deng; Julien R. C. Bergeron; D. D Majewski; Rick K. Huang; T. Spreter; B. Brett Finlay; Zhiheng Yu; Natalie C. J. Strynadka

The type III secretion (T3S) injectisome is a specialized protein nanomachine that is critical for the pathogenicity of many Gram-negative bacteria, including purveyors of plague, typhoid fever, whooping cough, sexually transmitted infections and major nosocomial infections. This syringe-shaped 3.5-MDa macromolecular assembly spans both bacterial membranes and that of the infected host cell. The internal channel formed by the injectisome allows for the direct delivery of partially unfolded virulence effectors into the host cytoplasm. The structural foundation of the injectisome is the basal body, a molecular lock-nut structure composed predominantly of three proteins that form highly oligomerized concentric rings spanning the inner and outer membranes. Here we present the structure of the prototypical Salmonella enterica serovar Typhimurium pathogenicity island 1 basal body, determined using single-particle cryo-electron microscopy, with the inner-membrane-ring and outer-membrane-ring oligomers defined at 4.3 Å and 3.6 Å resolution, respectively. This work presents the first, to our knowledge, high-resolution structural characterization of the major components of the basal body in the assembled state, including that of the widespread class of outer-membrane portals known as secretins.


Antimicrobial Agents and Chemotherapy | 2011

Identification of Pyruvate Kinase in Methicillin-Resistant Staphylococcus aureus as a Novel Antimicrobial Drug Target

Roya Zoraghi; Raymond H. See; Peter Axerio-Cilies; Nag S. Kumar; Huansheng Gong; Michael Hsing; Sukhbir Kaur; Richard D. Swayze; Liam J. Worrall; Emily Amandoron; Tian Lian; Linda Jackson; Jihong Jiang; Lisa Thorson; Christophe Labrière; Leonard J. Foster; Robert C. Brunham; William R. McMaster; B. Brett Finlay; Natalie C. J. Strynadka; Artem Cherkasov; Robert N. Young; Neil E. Reiner

ABSTRACT Novel classes of antimicrobials are needed to address the challenge of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). Using the architecture of the MRSA interactome, we identified pyruvate kinase (PK) as a potential novel drug target based upon it being a highly connected, essential hub in the MRSA interactome. Structural modeling, including X-ray crystallography, revealed discrete features of PK in MRSA, which appeared suitable for the selective targeting of the bacterial enzyme. In silico library screening combined with functional enzymatic assays identified an acyl hydrazone-based compound (IS-130) as a potent MRSA PK inhibitor (50% inhibitory concentration [IC50] of 0.1 μM) with >1,000-fold selectivity over human PK isoforms. Medicinal chemistry around the IS-130 scaffold identified analogs that more potently and selectively inhibited MRSA PK enzymatic activity and S. aureus growth in vitro (MIC of 1 to 5 μg/ml). These novel anti-PK compounds were found to possess antistaphylococcal activity, including both MRSA and multidrug-resistant S. aureus (MDRSA) strains. These compounds also exhibited exceptional antibacterial activities against other Gram-positive genera, including enterococci and streptococci. PK lead compounds were found to be noncompetitive inhibitors and were bactericidal. In addition, mutants with significant increases in MICs were not isolated after 25 bacterial passages in culture, indicating that resistance may be slow to emerge. These findings validate the principles of network science as a powerful approach to identify novel antibacterial drug targets. They also provide a proof of principle, based upon PK in MRSA, for a research platform aimed at discovering and optimizing selective inhibitors of novel bacterial targets where human orthologs exist, as leads for anti-infective drug development.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase

Maya A. Farha; Tomasz L. Czarny; Cullen L. Myers; Liam J. Worrall; Shawn French; Deborah G. Conrady; Yang Wang; Eric Oldfield; Natalie C. J. Strynadka; Eric D. Brown

Significance Small molecule probes have proved indispensable in dissecting bacterial systems. Their combinations have further expanded their utility as tools by enabling the study of interacting pathways. As such, screens for synergy between compounds have been widely used to reveal functional connections among cellular components. The utility of antagonism, however, has largely been overlooked. This study highlights the value of antagonistic interactions in elucidating genetic networks and mechanisms of drug action. Herein, we report on the discovery of clomiphene, an inhibitor of bacterial cell wall synthesis, uncovered through a systematic screen for antagonism. The discovery of clomiphene shed light on the pathways of cell wall biogenesis and, importantly, represents a new promising lead for the fight against infection. Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery.


Journal of Biological Chemistry | 2015

Structural Analysis of a Specialized Type III Secretion System Peptidoglycan-cleaving Enzyme

Brianne J. Burkinshaw; Wanyin Deng; Emilie Lameignere; Gregory A. Wasney; Haizhong Zhu; Liam J. Worrall; B. Brett Finlay; Natalie C. J. Strynadka

Background: Bacterial virulence-associated type III secretion system (T3SS) assembly requires a dedicated enzyme to penetrate peptidoglycan (PG). Results: We structurally characterized a T3SS PG-lytic enzyme, identified catalytically important residues, and characterized its activity. Conclusion: The active site is similar to lysozymes and lytic transglycosylases and interaction with the T3SS enhances activity. Significance: Structural information is critical for development of drugs targeting T3SS PG-lytic enzymes. The Gram-negative bacterium enteropathogenic Escherichia coli uses a syringe-like type III secretion system (T3SS) to inject virulence or “effector” proteins into the cytoplasm of host intestinal epithelial cells. To assemble, the T3SS must traverse both bacterial membranes, as well as the peptidoglycan layer. Peptidoglycan is made of repeating N-acetylmuramic acid and N-acetylglucosamine disaccharides cross-linked by pentapeptides to form a tight mesh barrier. Assembly of many macromolecular machines requires a dedicated peptidoglycan lytic enzyme (PG-lytic enzyme) to locally clear peptidoglycan. Here we have solved the first structure of a T3SS-associated PG-lytic enzyme, EtgA from enteropathogenic E. coli. Unexpectedly, the active site of EtgA has features in common with both lytic transglycosylases and hen egg white lysozyme. Most notably, the β-hairpin region resembles that of lysozyme and contains an aspartate that aligns with lysozyme Asp-52 (a residue critical for catalysis), a conservation not observed in other previously characterized lytic transglycosylase families to which the conserved T3SS enzymes had been presumed to belong. Mutation of the EtgA catalytic glutamate, Glu-42, conserved across lytic transglycosylases and hen egg white lysozyme, and this differentiating aspartate diminishes type III secretion in vivo, supporting its essential role in clearing the peptidoglycan for T3SS assembly. Finally, we show that EtgA forms a 1:1 complex with the building block of the polymerized T3SS inner rod component, EscI, and that this interaction enhances PG-lytic activity of EtgA in vitro, collectively providing the necessary strict localization and regulation of the lytic activity to prevent overall cell lysis.

Collaboration


Dive into the Liam J. Worrall's collaboration.

Top Co-Authors

Avatar

Natalie C. J. Strynadka

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

B. Brett Finlay

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Emilie Lameignere

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marija Vuckovic

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Stephen G. Withers

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Gregory A. Wasney

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Lars Baumann

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Julien R. C. Bergeron

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Robert Gruninger

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Wanyin Deng

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge