Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lian Pin Koh is active.

Publication


Featured researches published by Lian Pin Koh.


Nature | 2011

Primary forests are irreplaceable for sustaining tropical biodiversity

Luke Gibson; Tien Ming Lee; Lian Pin Koh; Barry W. Brook; Toby A. Gardner; Jos Barlow; Carlos A. Peres; William F. Laurance; Thomas E. Lovejoy; Navjot S. Sodhi

Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.


PLOS ONE | 2008

Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline

Navjot S. Sodhi; David Bickford; Arvin C. Diesmos; Tien Ming Lee; Lian Pin Koh; Barry W. Brook; Cagan H. Sekercioglu

Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species) to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545) or had increased (n = 28). These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Remotely sensed evidence of tropical peatland conversion to oil palm

Lian Pin Koh; Jukka Miettinen; Soo Chin Liew; Jaboury Ghazoul

Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ≈880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ≈140 million Mg of aboveground biomass carbon, and annual emissions of ≈4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ≈660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ≈20%, whereas oil-palm establishment would exacerbate species losses by up to ≈12%. To safeguard the regions biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia.


Biodiversity and Conservation | 2010

The state and conservation of Southeast Asian biodiversity.

Navjot S. Sodhi; Mary Rose C. Posa; Tien Ming Lee; David Bickford; Lian Pin Koh; Barry W. Brook

Southeast Asia is a region of conservation concern due to heavy losses of its native habitats. In this overview, we highlight the conservation importance of Southeast Asia by comparing its degree of species endemism and endangerment, and its rate of deforestation with other tropical regions (i.e., Meso-America, South America, and Sub-Saharan Africa). Southeast Asia contains the highest mean proportion of country-endemic bird (9%) and mammal species (11%). This region also has the highest proportion of threatened vascular plant, reptile, bird, and mammal species. Furthermore, not only is Southeast Asia’s annual deforestation rate the highest in the tropics, but it has also increased between the periods 1990–2000 and 2000–2005. This could result in projected losses of 13–85% of biodiversity in the region by 2100. Secondary habitat restoration, at least in certain countries, would allow for some amelioration of biodiversity loss and thus potentially lower the currently predicted extinction rates. Nonetheless, urgent conservation actions are needed. Conservation initiatives should include public education, sustaining livelihoods, and ways to enhance the sustainability of agriculture and increase the capacity of conservation institutions. Furthermore, these actions should be country-specific and not ignore areas heavily populated by humans, as they can also harbour high numbers of threatened species. We urge that cooperative conservation initiatives be undertaken and support (e.g., capacity-building) be given by more developed countries in the region and beyond.


Tropical Conservation Science | 2012

Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation

Lian Pin Koh; Serge A. Wich

Tropical deforestation continues to be a major driver of biodiversity loss and greenhouse gas emissions. Remote sensing technology is increasingly used to assess changes in forest cover, species distributions and carbon stocks. However, satellite and airborne sensors can be prohibitively costly and inaccessible for researchers in developing countries. Here, we describe the development and use of an inexpensive (<


Biodiversity and Conservation | 2010

Addressing the threats to biodiversity from oil-palm agriculture.

David S. Wilcove; Lian Pin Koh

2,000) unmanned aerial vehicle for surveying and mapping forests and biodiversity (referred to as ‘Conservation Drone’ hereafter). Our prototype drone is able to fly pre-programmed missions autonomously for a total flight time of ~25 minutes and over a distance of ~15 km. Non-technical operators can program each mission by defining waypoints along a flight path using an open-source software. This drone can record videos at up to 1080 pixel resolution (high definition), and acquire aerial photographs of <10 cm pixel resolution. Aerial photographs can be stitched together to produce real-time geo-referenced land use/cover maps of surveyed areas. We evaluate the performance of this prototype Conservation Drone based on a series of test flights in Aras Napal, Sumatra, Indonesia. We discuss the further development of Conservation Drone 2.0, which will have a bigger payload and longer range. Initial tests suggest a flight time of ~50 minutes and a range of ~25 km. Finally, we highlight the potential of this system for environmental and conservation applications, which include near real-time mapping of local land cover, monitoring of illegal forest activities, and surveying of large animal species.


Trends in Ecology and Evolution | 2013

Navjot's nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia

David S. Wilcove; Xingli Giam; David Edwards; Brendan Fisher; Lian Pin Koh

Oil-palm agriculture is the greatest immediate threat to biodiversity in Southeast Asia. Despite the efforts of environmentalists, oil palm continues to expand across the tropics. Those concerned about the impacts of oil palm on biodiversity must face some harsh social, economic, and ecological realities: (i) oil palm has been a very profitable crop; (ii) palm oil is used in so many products that simple, direct actions, such as boycotts, are unlikely to succeed; (iii) there is currently insufficient demand for certified sustainable palm oil and inadequate political clout from environmental groups in two of the biggest markets for palm oil—China and India—to slow the rate of forest conversion; and (iv) oil-palm agriculture has improved the lives of poor rural communities in Southeast Asia (although it has also disenfranchised some indigenous communities). To address the threats posed by oil-palm agriculture to biodiversity, environmentalists must change the behavior of the palm oil business through: (i) regulations to curb undesirable activities (e.g., a ban on converting forests to oil palm); (ii) financial incentives to promote desirable behavior (e.g., production of certified, sustainable oil palm); (iii) financial disincentives designed to discourage undesirable behavior (e.g., consumer pressure on major manufacturers and retailers to use palm oil that does not come from plantations created at the expense of forests); and (iv) the promotion of alternative, more biodiversity-friendly uses of forested land that might otherwise be converted to oil palm. There is no single best approach for dealing with the oil-palm crisis in Southeast Asia; a mixture of regulations, incentives, and disincentives targeted at all sectors of the oil-palm industry is necessary to protect the region’s rapidly disappearing forests.


Trends in Ecology and Evolution | 2010

REDD: a reckoning of environment and development implications

Jaboury Ghazoul; Rhett Butler; Javier Mateo-Vega; Lian Pin Koh

In 2004, Navjot Sodhi and colleagues warned that logging and agricultural conversion of Southeast Asias forests were leading to a biodiversity disaster. We evaluate this prediction against subsequent research and conclude that most of the fauna of the region can persist in logged forests. Conversely, conversion of primary or logged forests to plantation crops, such as oil palm, causes tremendous biodiversity loss. This loss is exacerbated by increased fire frequency. Therefore, we conclude that preventing agricultural conversion of logged forests is essential to conserving the biodiversity of this region. Our analysis also suggests that, because Southeast Asian forests are tightly tied to global commodity markets, conservation payments commensurate with combined returns from logging and subsequent agricultural production may be required to secure long-term forest protection.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Spatially explicit scenario analysis for reconciling agricultural expansion, forest protection, and carbon conservation in Indonesia.

Lian Pin Koh; Jaboury Ghazoul

Reducing Emissions from Deforestation (REDD) aims to curb carbon emissions from deforestation by financially compensating forest owners. However, compensation based on the opportunity costs of REDD might underestimate true costs by failing to account for downstream economic values of current land uses, including employment and wealth generated by processing and service industries. A comprehensive analysis of REDD impacts should also include sociopolitical impacts. REDD might exclude people from forest land, causing demographic shifts, and the declining tax revenues from commodity production and associated industries might be a disincentive to government investment in forested regions to the detriment of forest communities and regional development. We argue for the need to recognize and appropriately compensate the full range of economic, social and political net costs of REDD.


Ecological Applications | 2004

IMPORTANCE OF RESERVES, FRAGMENTS, AND PARKS FOR BUTTERFLY CONSERVATION IN A TROPICAL URBAN LANDSCAPE

Lian Pin Koh; Navjot S. Sodhi

Palm oil is the worlds most important vegetable oil in terms of production quantity. Indonesia, the worlds largest palm-oil producer, plans to double its production by 2020, with unclear implications for the other national priorities of food (rice) production, forest and biodiversity protection, and carbon conservation. We modeled the outcomes of alternative development scenarios and show that every single-priority scenario had substantial tradeoffs associated with other priorities. The exception was a hybrid approach wherein expansion targeted degraded and agricultural lands that are most productive for oil palm, least suitable for food cultivation, and contain the lowest carbon stocks. This approach avoided any loss in forest or biodiversity and substantially ameliorated the impacts of oil-palm expansion on carbon stocks (limiting net loss to 191.6 million tons) and annual food production capacity (loss of 1.9 million tons). Our results suggest that the environmental and land-use tradeoffs associated with oil-palm expansion can be largely avoided through the implementation of a properly planned and spatially explicit development strategy.

Collaboration


Dive into the Lian Pin Koh's collaboration.

Top Co-Authors

Avatar

Navjot S. Sodhi

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Tien Ming Lee

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge A. Wich

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toby A. Gardner

Stockholm Environment Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge