Lian Tian
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lian Tian.
American Journal of Physiology-heart and Circulatory Physiology | 2014
Aiping Liu; David A. Schreier; Lian Tian; Jens C. Eickhoff; Zhijie Wang; Timothy A. Hacker; Naomi C. Chesler
Pulmonary arterial hypertension (PAH) results in right ventricular (RV) dysfunction and failure. Paradoxically, women are more frequently diagnosed with PAH but have better RV systolic function and survival rates than men. The mechanisms by which sex differences alter PAH outcomes remain unknown. Here, we sought to study the role of estrogen in RV functional remodeling in response to PAH. The SU5416-hypoxia (SuHx) mouse model of PAH was used. To study the role of estrogen, female mice were ovariectomized and then treated with estrogen or placebo. SuHx significantly increased RV afterload and resulted in RV hypertrophy. Estrogen treatment attenuated the increase in RV afterload compared with the untreated group (effective arterial elastance: 2.3 ± 0.1 mmHg/μl vs. 3.2 ± 0.3 mmHg/μl), and this was linked to preserved pulmonary arterial compliance (compliance: 0.013 ± 0.001 mm(2)/mmHg vs. 0.010 ± 0.001 mm(2)/mmHg; P < 0.05) and decreased distal muscularization. Despite lower RV afterload in the estrogen-treated SuHx group, RV contractility increased to a similar level as the placebo-treated SuHx group, suggesting an inotropic effect of estrogen on RV myocardium. Consequently, when compared with the placebo-treated SuHx group, estrogen improved RV ejection fraction and cardiac output (ejection fraction: 57 ± 2% vs. 44 ± 2% and cardiac output: 9.7 ± 0.4 ml/min vs. 7.6 ± 0.6 ml/min; P < 0.05). Our study demonstrates for the first time that estrogen protects RV function in the SuHx model of PAH in mice directly by stimulating RV contractility and indirectly by protecting against pulmonary vascular remodeling. These results underscore the therapeutic potential of estrogen in PAH.
Pulmonary circulation | 2012
Lian Tian; Naomi C. Chesler
During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) undergo remodeling such that they become thicker and the elastic modulus increases. Both of these changes increase the vascular stiffness. The increase in pulmonary vascular stiffness contributes to increased right ventricular (RV) afterload, which causes RV hypertrophy and eventually failure. Studies have found that proximal PA stiffness or its inverse, compliance, is strongly related to morbidity and mortality in patients with PH. Therefore, accurate in vivo measurement of PA stiffness is useful for prognoses in patients with PH. It is also important to understand the structural changes in PAs that occur with PH that are responsible for stiffening. Here, we briefly review the most common parameters used to quantify stiffness and in vivo and in vitro methods for measuring PA stiffness in human and animal models. For in vivo approaches, we review invasive and noninvasive approaches that are based on measurements of pressure and inner or outer diameter or cross-sectional area. For in vitro techniques, we review several different testing methods that mimic one, two or several aspects of physiological loading (e.g., uniaxial and biaxial testing, dynamic inflation-force testing). Many in vivo and in vitro measurement methods exist in the literature, and it is important to carefully choose an appropriate method to measure PA stiffness accurately. Therefore, advantages and disadvantages of each approach are discussed.
Hypertension | 2015
Aiping Liu; Lian Tian; Mark J. Golob; Jens C. Eickhoff; Madison Boston; Naomi C. Chesler
Pulmonary arterial hypertension (PAH), a rapidly fatal vascular disease, strikes women more often than men. Paradoxically, female PAH patients have better prognosis and survival rates than males. The female sex hormone 17&bgr;-estradiol has been linked to the better outcome of PAH in females; however, the mechanisms by which 17&bgr;-estradiol alters PAH progression and outcomes remain unclear. Because proximal pulmonary arterial (PA) stiffness, one hallmark of PAH, is a powerful predictor of mortality and morbidity, we hypothesized that 17&bgr;-estradiol attenuates PAH-induced changes in mechanical properties in conduit proximal PAs, which imparts hemodynamic and energetic benefits to right ventricular function. To test this hypothesis, female mice were ovariectomized and treated with 17&bgr;-estradiol or placebo. PAH was induced in mice using SU5416 and chronic hypoxia. Extra-lobar left PAs were isolated and mechanically tested ex vivo to study both static and frequency-dependent mechanical behaviors in the presence or absence of smooth muscle cell activation. Our static mechanical test showed significant stiffening of large PAs with PAH (P<0.05). 17&bgr;-Estradiol restored PA compliance to control levels. The dynamic mechanical test demonstrated that 17&bgr;-estradiol protected the arterial wall from the PAH-induced frequency-dependent decline in dynamic stiffness and loss of viscosity with PAH (P<0.05). As demonstrated by the in vivo measurement of PA hemodynamics via right ventricular catheterization, modulation by 17&bgr;-estradiol of mechanical proximal PAs reduced pulsatile loading, which contributed to improved ventricular–vascular coupling. This study provides a mechanical mechanism for delayed disease progression and better outcome in female PAH patients and underscores the therapeutic potential of 17&bgr;-estradiol in PAH.
Journal of Biomechanics | 2015
Mark J. Golob; Lian Tian; Zhijie Wang; Todd A. Zimmerman; Christine A. Caneba; Timothy A. Hacker; Guoqing Song; Naomi C. Chesler
Aging is associated with conduit artery stiffening that is a risk factor for and can precede hypertension and ventricular dysfunction. Increases in mitochondria DNA (mtDNA) frequency have been correlated with aging. Mice with a mutation in the encoding domain (D257A) of a proof-reading deficient version of mtDNA polymerase-γ (POLG) have musculoskeletal features of premature aging and a shortened lifespan. However, few studies using these mice have investigated the effects of mtDNA mutations on cardiovascular function. We hypothesized that the proof-reading deficient mtDNA POLG leads to arterial stiffening, hypertension, and ventricular hypertrophy. Ten to twelve month-old D257A mice (n=13) and age- and sex-matched wild-type controls (n=13) were catheterized for hemodynamic and ventricular function measurements. Left common carotid arteries (LCCA) were harvested for mechanical tests followed by histology. Male D257A mice had pulmonary and systemic hypertension, arterial stiffening, larger LCCA diameter (701±45 vs. 597±60μm), shorter LCCA axial length (8.96±0.56 vs. 10.10±0.80mm), and reduced hematocrit (29.1±6.1 vs. 41.3±8.1; all p<0.05). Male and female D257A mice had biventricular hypertrophy (p<0.05). Female D257A mice did not have significant increases in pressure or arterial stiffening, suggesting that the mechanisms of hypertension or arterial stiffening from mtDNA mutations differ based on sex. Our results lend insight into the mechanisms of age-related cardiovascular disease and may point to novel treatment strategies to address cardiovascular mortality in the elderly.
Journal of The Mechanical Behavior of Biomedical Materials | 2015
Lian Tian; Joseph Henningsen; Max R. Salick; Wendy C. Crone; McLean Gunderson; Seth H. Dailey; Naomi C. Chesler
The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips used to hold the specimen. While the imaging technique is generally considered more accurate, it also requires more analysis, and the grip distance method is more widely used. The purpose of this study is to compare the stretch of the testing specimen calculated from the grip distance method to that obtained from the imaging method for canine descending aortas and large proximal pulmonary arteries. Our results showed a significant difference in stretch between the two methods; however, this difference was consistently less than 2%. Therefore, the grip distance method is an accurate approximation of the stretch in large elastic arteries in the uniaxial tensile test.
Journal of Biomechanics | 2014
Lian Tian; Heidi B. Kellihan; Joseph Henningsen; Alessandro Bellofiore; Omid Forouzan; Alejandro Roldán-Alzate; D. Consigny; McLean Gunderson; Seth H. Dailey; Christopher J. François; Naomi C. Chesler
A low relative area change (RAC) of the proximal pulmonary artery (PA) over the cardiac cycle is a good predictor of mortality from right ventricular failure in patients with pulmonary hypertension (PH). The relationship between RAC and local mechanical properties of arteries, which are known to stiffen in acute and chronic PH, is not clear, however. In this study, we estimated elastic moduli of three PAs (MPA, LPA and RPA: main, left and right PAs) at the physiological state using mechanical testing data and correlated these estimated elastic moduli to RAC measured in vivo with both phase-contrast magnetic resonance imaging (PC-MRI) and M-mode echocardiography (on RPA only). We did so using data from a canine model of acute PH due to embolization to assess the sensitivity of RAC to changes in elastic modulus in the absence of chronic PH-induced arterial remodeling. We found that elastic modulus increased with embolization-induced PH, presumably a consequence of increased collagen engagement, which corresponds well to decreased RAC. Furthermore, RAC was inversely related to elastic modulus. Finally, we found MRI and echocardiography yielded comparable estimates of RAC. We conclude that RAC of proximal PAs can be obtained from either MRI or echocardiography and a change in RAC indicates a change in elastic modulus of proximal PAs detectable even in the absence of chronic PH-induced arterial remodeling. The correlation between RAC and elastic modulus of proximal PAs may be useful for prognoses and to monitor the effects of therapeutic interventions in patients with PH.
Acta Biomaterialia | 2016
Lian Tian; Zhijie Wang; Yuming Liu; Jens C. Eickhoff; Kevin W. Eliceiri; Naomi C. Chesler
UNLABELLED During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) increase in both thickness and stiffness. Collagen, a component of the extracellular matrix, is mainly responsible for these changes via increased collagen fiber amount (or content) and crosslinking. We sought to differentiate the effects of collagen content and cross-linking on mouse PA mechanical changes using a constitutive model with parameters derived from experiments in which collagen content and cross-linking were decoupled during hypoxic pulmonary hypertension (HPH). We employed an eight-chain orthotropic element model to characterize collagens mechanical behavior and an isotropic neo-Hookean form to represent elastin. Our results showed a strong correlation between the material parameter related to collagen content and measured collagen content (R(2)=0.82, P<0.0001) and a moderate correlation between the material parameter related to collagen crosslinking and measured crosslinking (R(2)=0.24, P=0.06). There was no significant change in either the material parameter related to elastin or the measured elastin content from histology. The model-predicted pressure at which collagen begins to engage was ∼25mmHg, which is consistent with experimental observations. We conclude that this model may allow us to predict changes in the arterial extracellular matrix from measured mechanical behavior in PH patients, which may provide insight into prognoses and the effects of therapy. STATEMENT OF SIGNIFICANCE The literature has proposed several constitutive models to describe the mechanical effects of arterial collagen but none separates collagen content from crosslinking. Given that both are critical to arterial mechanics, the novel model described here does so. Furthermore, our novel model is well tested by experimental data; model parameters were reasonably correlated with measured collagen content and crosslinking and the model-predicted collagen transition stretch was consistent with that obtained experimentally. Given that arterial collagen structural changes and collagen engagement are critical to arterial stiffening in several disease states, this model, by linking mechanical and biological properties, may allow us to predict important biological changes during disease progression from measured mechanical behavior.
Journal of Biomechanical Engineering-transactions of The Asme | 2013
Lian Tian; Zhijie Wang; Roderic S. Lakes; Naomi C. Chesler
Large conduit arteries are not purely elastic, but viscoelastic, which affects not only the mechanical behavior but also the ventricular afterload. Different hysteresis loops such as pressure-diameter, pressure-luminal cross-sectional area (LCSA), and stress-strain have been used to estimate damping capacity, which is associated with the ratio of the dissipated energy to the stored energy. Typically, linearized methods are used to calculate the damping capacity of arteries despite the fact that arteries are nonlinearly viscoelastic. The differences in the calculated damping capacity between these hysteresis loops and the most common linear and correct nonlinear methods have not been fully examined. The purpose of this study was thus to examine these differences and to determine a preferred approach for arterial damping capacity estimation. Pressurization tests were performed on mouse extralobar pulmonary and carotid arteries in their physiological pressure ranges with pressure (P) and outer diameter (OD) measured. The P-inner diameter (ID), P-stretch, P-Almansi strain, P-Green strain, P-LCSA, and stress-strain loops (including the Cauchy and Piola-Kirchhoff stresses and Almansi and Green strains) were calculated using the P-OD data and arterial geometry. Then, the damping capacity was calculated from these loops with both linear and nonlinear methods. Our results demonstrate that the linear approach provides a reasonable approximation of damping capacity for all of the loops except the Cauchy stress-Almansi strain, for which the estimate of damping capacity was significantly smaller (22 ± 8% with the nonlinear method and 31 ± 10% with the linear method). Between healthy and diseased extralobar pulmonary arteries, both methods detected significant differences. However, the estimate of damping capacity provided by the linear method was significantly smaller (27 ± 11%) than that of the nonlinear method. We conclude that all loops except the Cauchy stress-Almansi strain loop can be used to estimate artery wall damping capacity in the physiological pressure range and the nonlinear method is recommended over the linear method.
Journal of Biomechanical Engineering-transactions of The Asme | 2015
Alessandro Bellofiore; Joseph Henningsen; C. G. Lepak; Lian Tian; Alejandro Roldán-Alzate; Heidi B. Kellihan; D. Consigny; Chris J. François; Naomi C. Chesler
Pulmonary arteries (PAs) distend to accommodate increases in cardiac output. PA distensibility protects the right ventricle (RV) from excessive increases in pressure. Loss of PA distensibility plays a critical role in the fatal progression of pulmonary arterial hypertension (PAH) toward RV failure. However, it is unclear how PA distensibility is distributed across the generations of PA branches, mainly because of the lack of appropriate in vivo methods to measure distensibility of vessels other than the large, conduit PAs. In this study, we propose a novel approach to assess the distensibility of individual PA branches. The metric of PA distensibility we used is the slope of the stretch ratio-pressure relationship. To measure distensibility, we combined invasive measurements of mean PA pressure with angiographic imaging of the PA network of six healthy female dogs. Stacks of 2D images of the PAs, obtained from either contrast enhanced magnetic resonance angiography (CE-MRA) or computed tomography digital subtraction angiography (CT-DSA), were used to reconstruct 3D surface models of the PA network, from the first bifurcation down to the sixth generation of branches. For each branch of the PA, we calculated radial and longitudinal stretch between baseline and a pressurized state obtained via acute embolization of the pulmonary vasculature. Our results indicated that large and intermediate PA branches have a radial distensibility consistently close to 2%/mmHg. Our axial distensibility data, albeit affected by larger variability, suggested that the PAs distal to the first generation may not significantly elongate in vivo, presumably due to spatial constraints. Results from both angiographic techniques were comparable to data from established phase-contrast (PC) magnetic resonance imaging (MRI) and ex vivo mechanical tests, which can only be used in the first branch generation. Our novel method can be used to characterize PA distensibility in PAH patients undergoing clinical right heart catheterization (RHC) in combination with MRI.
ASME 2012 Summer Bioengineering Conference, Parts A and B | 2012
Aiping Liu; Lian Tian; Diana M. Tabima; Naomi C. Chesler
Pulmonary artery hypertension (PAH) is a female dominant disease (the female-to-male ratio is 4:1), characterized by small distal pulmonary arterial narrowing and large proximal arterial stiffening, which increase right ventricle (RV) afterload and ultimately lead to RV failure [1,2]. Our recent studies have shown that collagen accumulation induced by chronic hypoxia increases the stiffness of the large extralobar pulmonary arteries (PAs) [3], and affects pulmonary vascular impedance (PVZ) [4]. The role of collagen in the female predominance in developing PAH has not been explored to date.Copyright