Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liang Kee Goh is active.

Publication


Featured researches published by Liang Kee Goh.


Gut | 2012

A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets

Niantao Deng; Liang Kee Goh; Hannah Wang; Kakoli Das; Jiong Tao; Iain Beehuat Tan; Shenli Zhang; Minghui Lee; Jeanie Wu; Kiat Hon Lim; Zhengdeng Lei; Glenn Goh; Qing-Yan Lim; Angie Lay-Keng Tan; Dianne Yu Sin Poh; Sudep Riahi; Sandra Bell; Michael M. Shi; Ronald Richard Linnartz; Feng-Cai Zhu; Khay Guan Yeoh; Han Chong Toh; Wei Peng Yong; Hyun Cheol Cheong; Sun Young Rha; Alex Boussioutas; Heike I. Grabsch; Steve Rozen; Patrick Tan

Objective Gastric cancer is a major gastrointestinal malignancy for which targeted therapies are emerging as treatment options. This study sought to identify the most prevalent molecular targets in gastric cancer and to elucidate systematic patterns of exclusivity and co-occurrence among these targets, through comprehensive genomic analysis of a large panel of gastric cancers. Design Using high-resolution single nucleotide polymorphism arrays, copy number alterations were profiled in a panel of 233 gastric cancers (193 primary tumours, 40 cell lines) and 98 primary matched gastric non-malignant samples. For selected alterations, their impact on gene expression and clinical outcome were evaluated. Results 22 recurrent focal alterations (13 amplifications and nine deletions) were identified. These included both known targets (FGFR2, ERBB2) and also novel genes in gastric cancer (KLF5, GATA6). Receptor tyrosine kinase (RTK)/RAS alterations were found to be frequent in gastric cancer. This study also demonstrates, for the first time, that these alterations occur in a mutually exclusive fashion, with KRAS gene amplifications highlighting a clinically relevant but previously underappreciated gastric cancer subgroup. FGFR2-amplified gastric cancers were also shown to be sensitive to dovitinib, an orally bioavailable FGFR/VEGFR targeting agent, potentially representing a subtype-specific therapy for FGFR2-amplified gastric cancers. Conclusion The study demonstrates the existence of five distinct gastric cancer patient subgroups, defined by the signature genomic alterations FGFR2 (9% of tumours), KRAS (9%), EGFR (8%), ERBB2 (7%) and MET (4%). Collectively, these subgroups suggest that at least 37% of gastric cancer patients may be potentially treatable by RTK/RAS directed therapies.


Human Molecular Genetics | 2011

Collagen-related genes influence the glaucoma risk factor, central corneal thickness

Eranga N. Vithana; Tin Aung; Chiea Chuen Khor; Belinda K. Cornes; Wan-Ting Tay; Xueling Sim; Raghavan Lavanya; Renyi Wu; Yingfeng Zheng; Martin L. Hibberd; Kee Seng Chia; Mark Seielstad; Liang Kee Goh; Seang-Mei Saw; E. Shyong Tai; Tien Yin Wong

Central corneal thickness (CCT) is a risk factor of glaucoma, the most common cause of irreversible blindness worldwide. The identification of genetic determinants affecting CCT in the normal population will provide insights into the mechanisms underlying the association between CCT and glaucoma, as well as the pathogenesis of glaucoma itself. We conducted two genome-wide association studies for CCT in 5080 individuals drawn from two ethnic populations in Singapore (2538 Indian and 2542 Malays) and identified novel genetic loci significantly associated with CCT (COL8A2 rs96067, p(meta) = 5.40 × 10⁻¹³, interval of RXRA-COL5A1 rs1536478, p(meta) = 3.05 × 10⁻⁹). We confirmed the involvement of a previously reported gene for CCT and brittle cornea syndrome (ZNF469) [rs9938149 (p(meta) = 1.63 × 10⁻¹⁶) and rs12447690 (p(meta) = 1.92 × 10⁻¹⁴)]. Evidence of association exceeding the formal threshold for genome-wide significance was observed at rs7044529, an SNP located within COL5A1 when data from this study (n = 5080, P = 0.0012) were considered together with all published data (reflecting an additional 7349 individuals, p(Fisher) = 1.5 × 10⁻⁹). These findings implicate the involvement of collagen genes influencing CCT and thus, possibly the pathogenesis of glaucoma.


Cancer Research | 2011

Genetic and Structural Variation in the Gastric Cancer Kinome Revealed through Targeted Deep Sequencing

Zhi Jiang Zang; Choon Kiat Ong; Ioana Cutcutache; Willie Yu; Shen Li Zhang; Dachuan Huang; Lian Dee Ler; Karl Dykema; Anna Gan; Jiong Tao; Siyu Lim; Yujing Liu; Phillip Andrew Futreal; Heike Grabsch; Kyle A. Furge; Liang Kee Goh; Steve Rozen; Bin Tean Teh; Patrick Tan

Genetic alterations in kinases have been linked to multiple human pathologies. To explore the landscape of kinase genetic variation in gastric cancer (GC), we used targeted, paired-end deep sequencing to analyze 532 protein and phosphoinositide kinases in 14 GC cell lines. We identified 10,604 single-nucleotide variants (SNV) in kinase exons including greater than 300 novel nonsynonymous SNVs. Family-wise analysis of the nonsynonymous SNVs revealed a significant enrichment in mitogen-activated protein kinase (MAPK)-related genes (P < 0.01), suggesting a preferential involvement of this kinase family in GC. A potential antioncogenic role for MAP2K4, a gene exhibiting recurrent alterations in 2 lines, was functionally supported by siRNA knockdown and overexpression studies in wild-type and MAP2K4 variant lines. The deep sequencing data also revealed novel, large-scale structural rearrangement events involving kinases including gene fusions involving CDK12 and the ERBB2 receptor tyrosine kinase in MKN7 cells. Integrating SNVs and copy number alterations, we identified Hs746T as a cell line exhibiting both splice-site mutations and genomic amplification of MET, resulting in MET protein overexpression. When applied to primary GCs, we identified somatic mutations in 8 kinases, 4 of which were recurrently altered in both primary tumors and cell lines (MAP3K6, STK31, FER, and CDKL5). These results demonstrate that how targeted deep sequencing approaches can deliver unprecedented multilevel characterization of a medically and pharmacologically relevant gene family. The catalog of kinome genetic variants assembled here may broaden our knowledge on kinases and provide useful information on genetic alterations in GC.


PLOS Genetics | 2012

Genetic Variants on Chromosome 1q41 Influence Ocular Axial Length and High Myopia

Qiao Fan; Veluchamy A. Barathi; Ching-Yu Cheng; Xin Zhou; Akira Meguro; Isao Nakata; Chiea Chuen Khor; Liang Kee Goh; Yi-Ju Li; Wan'e Lim; Candice E.H. Ho; Felicia Hawthorne; Yingfeng Zheng; Daniel Chua; Hidetoshi Inoko; Kenji Yamashiro; Kyoko Ohno-Matsui; Keitaro Matsuo; Fumihiko Matsuda; Eranga N. Vithana; Mark Seielstad; Nobuhisa Mizuki; Roger W. Beuerman; E. Shyong Tai; Nagahisa Yoshimura; Tin Aung; Terri L. Young; Tien Yin Wong; Yik-Ying Teo; Seang-Mei Saw

As one of the leading causes of visual impairment and blindness, myopia poses a significant public health burden in Asia. The primary determinant of myopia is an elongated ocular axial length (AL). Here we report a meta-analysis of three genome-wide association studies on AL conducted in 1,860 Chinese adults, 929 Chinese children, and 2,155 Malay adults. We identified a genetic locus on chromosome 1q41 harboring the zinc-finger 11B pseudogene ZC3H11B showing genome-wide significant association with AL variation (rs4373767, β = −0.16 mm per minor allele, Pmeta = 2.69×10−10). The minor C allele of rs4373767 was also observed to significantly associate with decreased susceptibility to high myopia (per-allele odds ratio (OR) = 0.75, 95% CI: 0.68–0.84, Pmeta = 4.38×10−7) in 1,118 highly myopic cases and 5,433 controls. ZC3H11B and two neighboring genes SLC30A10 and LYPLAL1 were expressed in the human neural retina, retinal pigment epithelium, and sclera. In an experimental myopia mouse model, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for the murine genes ZC3H11A, SLC30A10, and LYPLAL1. This supports the likely role of genetic variants at chromosome 1q41 in influencing AL variation and high myopia.


Gut | 2015

Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development.

Na-Yu Chia; Niantao Deng; Kakoli Das; Dachuan Huang; Longyu Hu; Yansong Zhu; Kiat Hon Lim; Minghui Lee; Jeanie Wu; Xin Xiu Sam; Gek San Tan; Wei Keat Wan; Willie Yu; Anna Gan; Angie Lay Keng Tan; Tay St; Khee Chee Soo; Wai Keong Wong; Lourdes Trinidad M Dominguez; Huck-Hui Ng; Steve Rozen; Liang Kee Goh; Bin-Tean Teh; Patrick Tan

Objective Gastric cancer (GC) is a deadly malignancy for which new therapeutic strategies are needed. Three transcription factors, KLF5, GATA4 and GATA6, have been previously reported to exhibit genomic amplification in GC. We sought to validate these findings, investigate how these factors function to promote GC, and identify potential treatment strategies for GCs harbouring these amplifications. Design KLF5, GATA4 and GATA6 copy number and gene expression was examined in multiple GC cohorts. Chromatin immunoprecipitation with DNA sequencing was used to identify KLF5/GATA4/GATA6 genomic binding sites in GC cell lines, and integrated with transcriptomics to highlight direct target genes. Phenotypical assays were conducted to assess the function of these factors in GC cell lines and xenografts in nude mice. Results KLF5, GATA4 and GATA6 amplifications were confirmed in independent GC cohorts. Although factor amplifications occurred in distinct sets of GCs, they exhibited significant mRNA coexpression in primary GCs, consistent with KLF5/GATA4/GATA6 cross-regulation. Chromatin immunoprecipitation with DNA sequencing revealed a large number of genomic sites co-occupied by KLF5 and GATA4/GATA6, primarily located at gene promoters and exhibiting higher binding strengths. KLF5 physically interacted with GATA factors, supporting KLF5/GATA4/GATA6 cooperative regulation on co-occupied genes. Depletion and overexpression of these factors, singly or in combination, reduced and promoted cancer proliferation, respectively, in vitro and in vivo. Among the KLF5/GATA4/GATA6 direct target genes relevant for cancer development, one target gene, HNF4α, was also required for GC proliferation and could be targeted by the antidiabetic drug metformin, revealing a therapeutic opportunity for KLF5/GATA4/GATA6 amplified GCs. Conclusions KLF5/GATA4/GATA6 may promote GC development by engaging in mutual crosstalk, collaborating to maintain a pro-oncogenic transcriptional regulatory network in GC cells.


Human Molecular Genetics | 2011

Association of variants in FRAP1 and PDGFRA with corneal curvature in Asian populations from Singapore

Siyu Han; Peng Chen; Qiao Fan; Chiea Chuen Khor; Xueling Sim; Wan-Ting Tay; Rick Twee-Hee Ong; Chen Suo; Liang Kee Goh; Raghavan Lavanya; Yingfeng Zheng; Renyi Wu; Mark Seielstad; Eranga N. Vithana; Jianjun Liu; Kee Seng Chia; Jeannette Lee; E-Shyong Tai; Tien Yin Wong; Tin Aung; Yik-Ying Teo; Seang-Mei Saw

Corneal curvature (CC) is a key determinant of major eye diseases, such as keratoconus, myopia and corneal astigmatism. No prior studies have discovered the genes for CC. Here we report the findings from four genome-wide association studies of CC in 10 008 samples from three population groups in Singapore. Our discovery phase surveyed 2867 Chinese and 3072 Malays, allowing us to identify two loci that were associated with CC variation: FRAP1 on chromosome 1p36.2 and PDGFRA on chromosome 4q12. These findings were subsequently replicated in a validation study involving an additional 2953 Asian Indians and a further collection of 1116 Chinese children. The effect sizes of the identified variants were consistent across all four cohorts, with seven single nucleotide polymorphisms (SNPs) in FRAP1 (lead SNP: rs17036350, meta P-value = 4.06 × 10(-13)) and six SNPs in PDGFRA (lead SNP: rs2114039, meta P-value = 1.33 × 10(-9)) attaining genome-wide significance in the SNP-based meta-analysis of the four studies. This is the first genome-wide survey of CC variation and we have identified two implicated loci in three genetically diverse Asian populations, suggesting the presence of common genetic etiology across multiple populations.


Nature Communications | 2014

Nanoscale chromatin profiling of gastric adenocarcinoma reveals cancer-associated cryptic promoters and somatically acquired regulatory elements

Masafumi Muratani; Niantao Deng; Wen Fong Ooi; Suling Joyce Lin; Manjie Xing; Chang Xu; Aditi Qamra; Su Ting Tay; Simeen Malik; Jeanie Wu; Ming Hui Lee; Shenli Zhang; Luke Lin Chuen Tan; Huihoon Chua; Wai Keong Wong; Hock Soo Ong; London Lucien Ooi; Pierce Kah-How Chow; Weng Hoong Chan; Khee Chee Soo; Liang Kee Goh; Steve Rozen; Bin Tean Teh; Qiang Yu; Huck-Hui Ng; Patrick Tan

Chromatin alterations are fundamental hallmarks of cancer. To study chromatin alterations in primary gastric adenocarcinomas, we perform nanoscale chromatin immunoprecipitation sequencing of multiple histone modifications in five gastric cancers and matched normal tissues. We identify hundreds of somatically altered promoters and predicted enhancers. Many cancer-associated promoters localize to genomic sites lacking previously annotated transcription start sites (cryptic promoters), driving expression of nearby genes involved in gastrointestinal cancer, embryonic development and tissue specification. Cancer-associated promoters overlap with embryonic stem cell regions targeted by polycomb repressive complex 2, exhibiting promoter bivalency and DNA methylation loss. We identify somatically acquired elements exhibiting germline allelic biases and non-coding somatic mutations creating new promoters. Our findings demonstrate the feasibility of profiling chromatin from solid tumours with limited tissue to identify regulatory elements, transcriptional patterns and regulatory genetic variants associated with cancer.


PLOS Genetics | 2011

Genome-Wide Meta-Analysis of Five Asian Cohorts Identifies PDGFRA as a Susceptibility Locus for Corneal Astigmatism

Qiao Fan; Xin Zhou; Chiea Chuen Khor; Ching-Yu Cheng; Liang Kee Goh; Xueling Sim; Wan-Ting Tay; Yi-Ju Li; Rick Twee-Hee Ong; Chen Suo; Belinda K. Cornes; Mohammad Kamran Ikram; Kee Seng Chia; Mark Seielstad; Jianjun Liu; Eranga N. Vithana; Terri L. Young; E-Shyong Tai; Tien Yin Wong; Tin Aung; Yik-Ying Teo; Seang-Mei Saw

Corneal astigmatism refers to refractive abnormalities and irregularities in the curvature of the cornea, and this interferes with light being accurately focused at a single point in the eye. This ametropic condition is highly prevalent, influences visual acuity, and is a highly heritable trait. There is currently a paucity of research in the genetic etiology of corneal astigmatism. Here we report the results from five genome-wide association studies of corneal astigmatism across three Asian populations, with an initial discovery set of 4,254 Chinese and Malay individuals consisting of 2,249 cases and 2,005 controls. Replication was obtained from three surveys comprising of 2,139 Indians, an additional 929 Chinese children, and an independent 397 Chinese family trios. Variants in PDGFRA on chromosome 4q12 (lead SNP: rs7677751, allelic odds ratio = 1.26 (95% CI: 1.16–1.36), P meta = 7.87×10−9) were identified to be significantly associated with corneal astigmatism, exhibiting consistent effect sizes across all five cohorts. This highlights the potential role of variants in PDGFRA in the genetic etiology of corneal astigmatism across diverse Asian populations.


PLOS ONE | 2013

HER2 Amplification and Clinicopathological Characteristics in a Large Asian Cohort of Rare Mucinous Ovarian Cancer

Wen-Yee Chay; Sung-Hock Chew; Whee-Sze Ong; Inny Busmanis; Xinyun Li; Sharyl Thung; Lynette Ngo; Sheow Lei Lim; Yong-Kuei Lim; Yin-Nin Chia; Elisa Koh; Cindy Pang; Lay-Tin Soh; Jin Wang; Tew-Hong Ho; Sun-Kuie Tay; Soo-Kim Lim-Tan; Kiat Hon Lim; John Whay Kuang Chia; Liang Kee Goh

Mucinous epithelial ovarian cancer has a poor prognosis in the advanced stages and responds poorly to conventional chemotherapy. We aim to elucidate the clinicopathological factors and incidence of HER2 expression of this cancer in a large Asian retrospective cohort from Singapore. Of a total of 133 cases, the median age at diagnosis was 48.3 years (range, 15.8–89.0 years), comparatively younger than western cohorts. Most were Chinese (71%), followed by Malays (16%), others (9.0%), and Indians (5%). 24% were noted to have a significant family history of malignancy of which breast and gastrointestinal cancers the most prominent. Majority of the patients (80%) had stage I disease at diagnosis. Information on HER2 status was available in 113 cases (85%). Of these, 31 cases (27.4%) were HER2+, higher than 18.8% reported in western population. HER2 positivity appeared to be lower among Chinese and higher among Malays patients (p = 0.052). With the current standard of care, there was no discernible impact of HER2 status on overall survival. (HR = 1.79; 95% CI, 0.66–4.85; p = 0.249). On the other hand, positive family history of cancer, presence of lymphovascular invasion, and ovarian surface involvements were significantly associated with inferior overall survival on univariate and continued to be statistically significant after adjustment for stage. While these clinical factors identify high risk patients, it is promising that the finding of a high incidence of HER2 in our Asian population may allow development of a HER2 targeted therapy to improve the management of mucinous ovarian cancers.


BMC Medical Genomics | 2012

Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library

Jin Zhou; Geng Bo Chen; Yew Chung Tang; Rohit A. Sinha; Yonghui Wu; Chui Sun Yap; Guihua Wang; Junbo Hu; Xianmin Xia; Patrick Tan; Liang Kee Goh; Paul M. Yen

BackgroundWhile there is strong evidence for phosphatidylinositol 3-kinase (PI3K) involvement in cancer development, there is limited information about the role of PI3K regulatory subunits. PIK3R3, the gene that encodes the PI3K regulatory subunit p55γ, is over-expressed in glioblastoma and ovarian cancers, but its expression in gastric cancer (GC) is not known. We thus used genetic and bioinformatic approaches to examine PIK3R3 expression and function in GC, the second leading cause of cancer mortality world-wide and highly prevalent among Asians.MethodsPrimary GC and matched non-neoplastic mucosa tissue specimens from a unique Asian patient gastric cancer library were comprehensively profiled with platforms that measured genome-wide mRNA expression, DNA copy number variation, and DNA methylation status. Function of PIK3R3 was predicted by IPA pathway analysis of co-regulated genes with PIK3R3, and further investigated by siRNA knockdown studies. Cell proliferation was estimated by crystal violet dye elution and BrdU incorporation assay. Cell cycle distribution was analysed by FACS.ResultsPIK3R3 was significantly up-regulated in GC specimens (n = 126, p < 0.05), and 9.5 to 15% tumors showed more than 2 fold increase compare to the paired mucosa tissues. IPA pathway analysis showed that PIK3R3 promoted cellular growth and proliferation. Knockdown of PIK3R3 decreased the growth of GC cells, induced G0/G1 cell cycle arrest, decreased retinoblastoma protein (Rb) phosphorylation, cyclin D1, and PCNA expression.ConclusionUsing a combination of genetic, bioinformatic, and molecular biological approaches, we showed that PIK3R3 was up-regulated in GC and promoted cell cycle progression and proliferation; and thus may be a potential new therapeutic target for GC.

Collaboration


Dive into the Liang Kee Goh's collaboration.

Top Co-Authors

Avatar

Patrick Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Eranga N. Vithana

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Seang-Mei Saw

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Aadhitthya Vijayaraghavan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jeanie Wu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Kiat Hon Lim

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

Niantao Deng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Qiao Fan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Tien Yin Wong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Tin Aung

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge