Niantao Deng
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Niantao Deng.
Gut | 2012
Niantao Deng; Liang Kee Goh; Hannah Wang; Kakoli Das; Jiong Tao; Iain Beehuat Tan; Shenli Zhang; Minghui Lee; Jeanie Wu; Kiat Hon Lim; Zhengdeng Lei; Glenn Goh; Qing-Yan Lim; Angie Lay-Keng Tan; Dianne Yu Sin Poh; Sudep Riahi; Sandra Bell; Michael M. Shi; Ronald Richard Linnartz; Feng-Cai Zhu; Khay Guan Yeoh; Han Chong Toh; Wei Peng Yong; Hyun Cheol Cheong; Sun Young Rha; Alex Boussioutas; Heike I. Grabsch; Steve Rozen; Patrick Tan
Objective Gastric cancer is a major gastrointestinal malignancy for which targeted therapies are emerging as treatment options. This study sought to identify the most prevalent molecular targets in gastric cancer and to elucidate systematic patterns of exclusivity and co-occurrence among these targets, through comprehensive genomic analysis of a large panel of gastric cancers. Design Using high-resolution single nucleotide polymorphism arrays, copy number alterations were profiled in a panel of 233 gastric cancers (193 primary tumours, 40 cell lines) and 98 primary matched gastric non-malignant samples. For selected alterations, their impact on gene expression and clinical outcome were evaluated. Results 22 recurrent focal alterations (13 amplifications and nine deletions) were identified. These included both known targets (FGFR2, ERBB2) and also novel genes in gastric cancer (KLF5, GATA6). Receptor tyrosine kinase (RTK)/RAS alterations were found to be frequent in gastric cancer. This study also demonstrates, for the first time, that these alterations occur in a mutually exclusive fashion, with KRAS gene amplifications highlighting a clinically relevant but previously underappreciated gastric cancer subgroup. FGFR2-amplified gastric cancers were also shown to be sensitive to dovitinib, an orally bioavailable FGFR/VEGFR targeting agent, potentially representing a subtype-specific therapy for FGFR2-amplified gastric cancers. Conclusion The study demonstrates the existence of five distinct gastric cancer patient subgroups, defined by the signature genomic alterations FGFR2 (9% of tumours), KRAS (9%), EGFR (8%), ERBB2 (7%) and MET (4%). Collectively, these subgroups suggest that at least 37% of gastric cancer patients may be potentially treatable by RTK/RAS directed therapies.
Gastroenterology | 2011
Iain Beehuat Tan; Tatiana Ivanova; Kiat Hon Lim; Chee Wee Ong; Niantao Deng; Julian Lee; Sze Huey Tan; Jeanie Wu; Ming Hui Lee; Chia Huey Ooi; Sun Young Rha; Wai Keong Wong; Alex Boussioutas; Khay Guan Yeoh; Jimmy So; Wei Peng Yong; Akira Tsuburaya; Heike I. Grabsch; Han Chong Toh; Steven G. Rozen; Jae Ho Cheong; Sung Hoon Noh; Wei Kiat Wan; Jaffer A. Ajani; Ju Seog Lee; Manuel Salto–Tellez; Patrick Tan
BACKGROUND & AIMS Gastric cancer (GC) is a heterogeneous disease comprising multiple subtypes that have distinct biological properties and effects in patients. We sought to identify new, intrinsic subtypes of GC by gene expression analysis of a large panel of GC cell lines. We tested if these subtypes might be associated with differences in patient survival times and responses to various standard-of-care cytotoxic drugs. METHODS We analyzed gene expression profiles for 37 GC cell lines to identify intrinsic GC subtypes. These subtypes were validated in primary tumors from 521 patients in 4 independent cohorts, where the subtypes were determined by either expression profiling or subtype-specific immunohistochemical markers (LGALS4, CDH17). In vitro sensitivity to 3 chemotherapy drugs (5-fluorouracil, cisplatin, oxaliplatin) was also assessed. RESULTS Unsupervised cell line analysis identified 2 major intrinsic genomic subtypes (G-INT and G-DIF) that had distinct patterns of gene expression. The intrinsic subtypes, but not subtypes based on Laurens histopathologic classification, were prognostic of survival, based on univariate and multivariate analysis in multiple patient cohorts. The G-INT cell lines were significantly more sensitive to 5-fluorouracil and oxaliplatin, but more resistant to cisplatin, than the G-DIF cell lines. In patients, intrinsic subtypes were associated with survival time following adjuvant, 5-fluorouracil-based therapy. CONCLUSIONS Intrinsic subtypes of GC, based on distinct patterns of expression, are associated with patient survival and response to chemotherapy. Classification of GC based on intrinsic subtypes might be used to determine prognosis and customize therapy.
Clinical Cancer Research | 2011
Hue Kian Oh; Angie Lay Keng Tan; Kakoli Das; Chia Huey Ooi; Niantao Deng; Iain Bee Huat Tan; Emmanuel Beillard; Julian Lee; Kalpana Ramnarayanan; Sun Young Rha; Nallasivam Palanisamy; P. Mathijs Voorhoeve; Patrick Tan
Purpose: MicroRNAs (miRNA) play pivotal oncogenic and tumor-suppressor roles in several human cancers. We sought to discover novel tumor-suppressor miRNAs in gastric cancer (GC). Experimental Design: Using Agilent miRNA microarrays, we compared miRNA expression profiles of 40 primary gastric tumors and 40 gastric normal tissues, identifying miRNAs significantly downregulated in gastric tumors. Results: Among the top 80 miRNAs differentially expressed between gastric tumors and normals (false discovery rate < 0.01), we identified hsa-miR-486 (miR-486) as a significantly downregulated miRNA in primary GCs and GC cell lines. Restoration of miR-486 expression in GC cell lines (YCC3, SCH and AGS) caused suppression of several pro-oncogenic traits, whereas conversely inhibiting miR-486 expression in YCC6 GC cells enhanced cellular proliferation. Array-CGH analysis of 106 primary GCs revealed genomic loss of the miR-486 locus in approximately 25% to 30% of GCs, including two tumors with focal genomic losses specifically deleting miR-486, consistent with miR-486 playing a tumor-suppressive role. Bioinformatic analysis identified the secreted antiapoptotic glycoprotein OLFM4 as a potential miR-486 target. Restoring miR-486 expression in GC cells decreased endogenous OLFM4 transcript and protein levels, and also inhibited expression of luciferase reporters containing an OLFM4 3′ untranslated region with predicted miR-486 binding sites. Supporting the biological relevance of OLFM4 as a miR-486 target, proliferation in GC cells was also significantly reduced by OLFM4 silencing. Conclusions:miR-486 may function as a novel tumor-suppressor miRNA in GC. Its antioncogenic activity may involve the direct targeting and inhibition of OLFM4. Clin Cancer Res; 17(9); 2657–67. ©2011 AACR.
Science Translational Medicine | 2012
Hermioni Zouridis; Niantao Deng; Tatiana Ivanova; Yansong Zhu; Wong B; Dan Huang; Yingting Wu; Yonghui Wu; Iain Bee Huat Tan; Natalia Liem; Gopalakrishnan; Luo Q; Jeanie Wu; Minghui Lee; Wei Peng Yong; Liang Goh; Bin Tean Teh; Steve Rozen; Patrick Tan
A large-scale genomic survey of epigenetic alterations in gastric cancer identifies clinically relevant molecular subgroups. The Silent Treatment of Gastric Cancer A new study by Zouridis and colleagues refutes the old adage that “silence is golden”—at least in the realm of gene methylation and epigenetic silencing in cancer. To decipher the effects of “silence” on gastric cancer, the authors analyzed gene methylation patterns in 240 gastric tumors and compared them to those of 94 matched samples of adjacent normal tissue. Gastric cancer is one of the most common types of cancer worldwide—and one of the most deadly, with few effective treatment options available. As a possible source of therapeutic targets, scientists are searching for genetic and epigenetic alteration patterns characteristic of these tumors. Here, the authors extensively characterized methylation patterns in human gastric cancers, which revealed tumor-specific arrangements of hyper- and hypomethylation. Zouridis and colleagues also identified a subset of cancers that fell into the CpG island methylator phenotype (CIMP) subgroup, which is associated with more extensive methylation and lower chances of survival in younger patients. As a possible pharmaceutical intervention, the authors tested the effects of the demethylating drug 5-aza-2′-deoxycytidine in CIMP tumor cell lines and found that their proliferation was significantly decreased when compared with non-CIMP cell lines. A broader analysis of gene regions that undergo modifications in cancers likely will identify new therapeutic targets and corresponding treatments. But for patients with high-risk gastric cancers that fall into the CIMP subgroup, silenced DNA is golden because it serves as a target for currently available drugs. Epigenetic alterations are fundamental hallmarks of cancer genomes. We surveyed the landscape of DNA methylation alterations in gastric cancer by analyzing genome-wide CG dinucleotide (CpG) methylation profiles of 240 gastric cancers (203 tumors and 37 cell lines) and 94 matched normal gastric tissues. Cancer-specific epigenetic alterations were observed in 44% of CpGs, comprising both tumor hyper- and hypomethylation. Twenty-five percent of the methylation alterations were significantly associated with changes in tumor gene expression. Whereas most methylation-expression correlations were negative, several positively correlated methylation-expression interactions were also observed, associated with CpG sites exhibiting atypical transcription start site distances and gene body localization. Methylation clustering of the tumors revealed a CpG island methylator phenotype (CIMP) subgroup associated with widespread hypermethylation, young patient age, and adverse patient outcome in a disease stage–independent manner. CIMP cell lines displayed sensitivity to 5-aza-2′-deoxycytidine, a clinically approved demethylating drug. We also identified long-range regions of epigenetic silencing (LRESs) in CIMP tumors. Combined analysis of the methylation, gene expression, and drug treatment data suggests that certain LRESs may silence specific genes within the region, rather than all genes. Finally, we discovered regions of long-range tumor hypomethylation, associated with increased chromosomal instability. Our results provide insights into the epigenetic impact of environmental and biological agents on gastric epithelial cells, which may contribute to cancer.
Genome Biology | 2012
Niranjan Nagarajan; Denis Bertrand; Axel M. Hillmer; Zhi Jiang Zang; Fei Yao; Pierre-Étienne Jacques; Audrey S.M. Teo; Ioana Cutcutache; Zhenshui Zhang; Wah Heng Lee; Yee Yen Sia; Song Gao; Pramila Ariyaratne; Andrea Ho; Xing Yi Woo; Lavanya Veeravali; Choon Kiat Ong; Niantao Deng; Kartiki Vasant Desai; Chiea Chuen Khor; Martin L. Hibberd; Atif Shahab; Jaideepraj Rao; Mengchu Wu; Ming Teh; Feng Zhu; Sze Yung Chin; Brendan Pang; Jimmy By So; Guillaume Bourque
BackgroundGastric cancer is the second highest cause of global cancer mortality. To explore the complete repertoire of somatic alterations in gastric cancer, we combined massively parallel short read and DNA paired-end tag sequencing to present the first whole-genome analysis of two gastric adenocarcinomas, one with chromosomal instability and the other with microsatellite instability.ResultsIntegrative analysis and de novo assemblies revealed the architecture of a wild-type KRAS amplification, a common driver event in gastric cancer. We discovered three distinct mutational signatures in gastric cancer - against a genome-wide backdrop of oxidative and microsatellite instability-related mutational signatures, we identified the first exome-specific mutational signature. Further characterization of the impact of these signatures by combining sequencing data from 40 complete gastric cancer exomes and targeted screening of an additional 94 independent gastric tumors uncovered ACVR2A, RPL22 and LMAN1 as recurrently mutated genes in microsatellite instability-positive gastric cancer and PAPPA as a recurrently mutated gene in TP53 wild-type gastric cancer.ConclusionsThese results highlight how whole-genome cancer sequencing can uncover information relevant to tissue-specific carcinogenesis that would otherwise be missed from exome-sequencing data.
Gut | 2015
Na-Yu Chia; Niantao Deng; Kakoli Das; Dachuan Huang; Longyu Hu; Yansong Zhu; Kiat Hon Lim; Minghui Lee; Jeanie Wu; Xin Xiu Sam; Gek San Tan; Wei Keat Wan; Willie Yu; Anna Gan; Angie Lay Keng Tan; Tay St; Khee Chee Soo; Wai Keong Wong; Lourdes Trinidad M Dominguez; Huck-Hui Ng; Steve Rozen; Liang Kee Goh; Bin-Tean Teh; Patrick Tan
Objective Gastric cancer (GC) is a deadly malignancy for which new therapeutic strategies are needed. Three transcription factors, KLF5, GATA4 and GATA6, have been previously reported to exhibit genomic amplification in GC. We sought to validate these findings, investigate how these factors function to promote GC, and identify potential treatment strategies for GCs harbouring these amplifications. Design KLF5, GATA4 and GATA6 copy number and gene expression was examined in multiple GC cohorts. Chromatin immunoprecipitation with DNA sequencing was used to identify KLF5/GATA4/GATA6 genomic binding sites in GC cell lines, and integrated with transcriptomics to highlight direct target genes. Phenotypical assays were conducted to assess the function of these factors in GC cell lines and xenografts in nude mice. Results KLF5, GATA4 and GATA6 amplifications were confirmed in independent GC cohorts. Although factor amplifications occurred in distinct sets of GCs, they exhibited significant mRNA coexpression in primary GCs, consistent with KLF5/GATA4/GATA6 cross-regulation. Chromatin immunoprecipitation with DNA sequencing revealed a large number of genomic sites co-occupied by KLF5 and GATA4/GATA6, primarily located at gene promoters and exhibiting higher binding strengths. KLF5 physically interacted with GATA factors, supporting KLF5/GATA4/GATA6 cooperative regulation on co-occupied genes. Depletion and overexpression of these factors, singly or in combination, reduced and promoted cancer proliferation, respectively, in vitro and in vivo. Among the KLF5/GATA4/GATA6 direct target genes relevant for cancer development, one target gene, HNF4α, was also required for GC proliferation and could be targeted by the antidiabetic drug metformin, revealing a therapeutic opportunity for KLF5/GATA4/GATA6 amplified GCs. Conclusions KLF5/GATA4/GATA6 may promote GC development by engaging in mutual crosstalk, collaborating to maintain a pro-oncogenic transcriptional regulatory network in GC cells.
Nature Communications | 2014
Masafumi Muratani; Niantao Deng; Wen Fong Ooi; Suling Joyce Lin; Manjie Xing; Chang Xu; Aditi Qamra; Su Ting Tay; Simeen Malik; Jeanie Wu; Ming Hui Lee; Shenli Zhang; Luke Lin Chuen Tan; Huihoon Chua; Wai Keong Wong; Hock Soo Ong; London Lucien Ooi; Pierce Kah-How Chow; Weng Hoong Chan; Khee Chee Soo; Liang Kee Goh; Steve Rozen; Bin Tean Teh; Qiang Yu; Huck-Hui Ng; Patrick Tan
Chromatin alterations are fundamental hallmarks of cancer. To study chromatin alterations in primary gastric adenocarcinomas, we perform nanoscale chromatin immunoprecipitation sequencing of multiple histone modifications in five gastric cancers and matched normal tissues. We identify hundreds of somatically altered promoters and predicted enhancers. Many cancer-associated promoters localize to genomic sites lacking previously annotated transcription start sites (cryptic promoters), driving expression of nearby genes involved in gastrointestinal cancer, embryonic development and tissue specification. Cancer-associated promoters overlap with embryonic stem cell regions targeted by polycomb repressive complex 2, exhibiting promoter bivalency and DNA methylation loss. We identify somatically acquired elements exhibiting germline allelic biases and non-coding somatic mutations creating new promoters. Our findings demonstrate the feasibility of profiling chromatin from solid tumours with limited tissue to identify regulatory elements, transcriptional patterns and regulatory genetic variants associated with cancer.
Science Translational Medicine | 2011
Jiong Tao; Niantao Deng; Kalpana Ramnarayanan; Baohua Huang; Hue Kian Oh; Siew Hong Leong; Seong Soo Lim; Iain Beehuat Tan; Chia Huey Ooi; Jeanie Wu; Minghui Lee; Shenli Zhang; Sun Young Rha; Hyun Cheol Chung; Duane T. Smoot; Hassan Ashktorab; Oi Lian Kon; Valere Cacheux; Celestial T. Yap; Nallasivam Palanisamy; Patrick Tan
One partner of a fusion gene found in gastric cancer, CD44-SLC1A2, may contribute to the tumor’s abnormal metabolism. Bad Drivers Steer Scientists Toward New Drug Targets It’s ironic, but cancer cells are notoriously bad at cell division, losing bits and rearranging chunks of the genome in the process. One result of this chaos is the birth of chimeric genes, wherein one gene segment gets erroneously fused to part of another, sometimes forming peculiar hybrid proteins that contribute to the cancer cell phenotype. For example, the fused aberrant BCR-ABL gene drives chronic myelogenous leukemia and has proven to be a vulnerable target for therapy. Gene fusions in solid cancers are not so easy to spot, but have been located in prostate and small cell lung cancers. Now, Tao and her co-workers have documented a fusion gene that forms in a small percentage of gastric tumor cells and may contribute to the development of cancer. The authors analyzed copy number variations of genes in more than 100 primary gastric tumors and 27 established gastric tumor cell lines and pinpointed a common breakpoint in three and one, respectively. The resulting chimeric gene fused most of the coding region of SLC1A2/EAAT2 (which encodes a glutamate transporter) to what is probably the strong transcriptional promoter of its neighboring gene, CD44, likely the result of a chromosome inversion. The fusion gene generated a truncated SLC1A2 protein in the original tumors and in a new group of gastric cancers created by the authors through overexpression of the fusion gene in normal gastric cells. But an abnormal protein that lives in tumor cells can be an innocent bystander. So, the authors asked whether the truncated SLC1A2 contributes to gastric cancer development, and their evidence suggested that the answer is yes. Cells in which shortened SLC1A2 expression was silenced with small interfering RNA were less proficient at dividing and invading soft substrates—hallmarks of cancer cells—and overexpression of the pruned protein enhanced these traits. Consistent with the function of SLC1A2 as a transporter of glutamate, the amino acid—which can act as a growth regulator—existed in higher concentrations in gastric cancer cells and cell lines than in normal cells. And in a final set of incriminating evidence, tumor cells that sported the CD44-SLC1A2 fusion gene had higher amounts of SLC1A2 than did wild-type cells, suggesting that this aberrant protein may trigger a pro-oncogenic phenotype. Most other genes that are fused in cancers encode kinase enzymes or transcriptional regulatory proteins. The implication of an overexpressed metabolism-related gene in some gastric tumors may define a new class of cancer-driving genes, although the protein could also augment other cancer-promoting genetic aberrations. The utility of this fusion gene as a drug target or prognostic tool will require more studies, but this particular mistake made by a dividing cancer cell may act as a GPS that directs researchers down a new therapeutic avenue for gastric cancer. Fusion genes are chimeric genes formed in cancers through genomic aberrations such as translocations, amplifications, and rearrangements. To identify fusion genes in gastric cancer, we analyzed regions of chromosomal imbalance in a cohort of 106 primary gastric cancers and 27 cell lines derived from gastric cancers. Multiple samples exhibited genomic breakpoints in the 5′ region of SLC1A2/EAAT2, a gene encoding a glutamate transporter. Analysis of a breakpoint-positive SNU16 cell line revealed expression of a CD44-SLC1A2 fusion transcript caused by a paracentric chromosomal inversion, which was predicted to produce a truncated but functional SLC1A2 protein. In primary tumors, CD44-SLC1A2 gene fusions were detected in 1 to 2% of gastric cancers, but not in adjacent matched normal gastric tissues. When we specifically silenced CD44-SLC1A2, cellular proliferation, invasion, and anchorage-independent growth were significantly reduced. Conversely, CD44-SLC1A2 overexpression in gastric cells stimulated these pro-oncogenic traits. CD44-SLC1A2 silencing caused significant reductions in intracellular glutamate concentrations and sensitized SNU16 cells to cisplatin, a commonly used chemotherapeutic agent in gastric cancer. We conclude that fusion of the SLC1A2 gene coding region to CD44 regulatory elements likely causes SLC1A2 transcriptional dysregulation, because tumors expressing high SLC1A2 levels also tended to be CD44-SLC1A2–positive. CD44-SLC1A2 may represent a class of gene fusions in cancers that establish a pro-oncogenic metabolic milieu favoring tumor growth and survival.
Gut | 2015
Jin Qian; Xuan Kong; Niantao Deng; Patrick Tan; Haoyan Chen; Ji-Lin Wang; Zhaoli Li; Ye Hu; Weiping Zou; Jie Xu; Jing-Yuan Fang
Objective Octamer transcription factor 1 (OCT1) was found to be expressed in intestinal metaplasia and gastric cancer (GC), but the exact roles of OCT1 in GC remain unclear. The objective of this study was to determine the functional and prognostic implications of OCT1 in GC. Design Expression of OCT1 was examined in paired normal and cancerous gastric tissues and the prognostic significance of OCT1 was analysed by univariate and multivariate survival analyses. The functions of OCT1 on synbindin expression and extracellular signal-regulated kinase (ERK) phosphorylation were studied in vitro and in xenograft mouse models. Results The OCT1 gene is recurrently amplified and upregulated in GC. OCT1 overexpression and amplification are associated with poor survival in patients with GC and the prognostic significance was confirmed by independent patient cohorts. Combining OCT1 overexpression with American Joint Committee on Cancer staging improved the prediction of survival in patients with GC. High expression of OCT1 associates with activation of the ERK mitogen-activated protein kinase signalling pathway in GC tissues. OCT1 functions by transactivating synbindin, which binds to ERK DEF domain and facilitates ERK phosphorylation by MEK. OCT1-synbindin signalling results in the activation of ERK substrates ELK1 and RSK, leading to increased cell proliferation and invasion. Immunofluorescent study of human GC tissue samples revealed strong association between OCT1 protein level and synbindin expression/ERK phosphorylation. Upregulation of OCT1 in mouse xenograft models induced synbindin expression and ERK activation, leading to accelerated tumour growth in vivo. Conclusions OCT1 is a driver of synbindin-mediated ERK signalling and a promising marker for the prognosis and molecular subtyping of GC.
Gastric Cancer | 2012
Benedict Yan; Ee Xuan Yau; Sanjay Samanta; Chee Wee Ong; Kol Jia Yong; Lai Kuan Ng; Bhaskar Bhattacharya; Kiat Hon Lim; Richie Soong; Khay Guan Yeoh; Niantao Deng; Patrick Tan; Yulin Lam; Manuel Salto-Tellez
BackgroundGastric cancer is a leading cause of cancer-related mortality, and chemotherapeutic options are currently limited. PIM1 kinase, an oncogene that promotes tumorigenesis in several cancer types, might represent a novel therapeutic target in gastric cancer.MethodsWe studied the expression and genomic status of PIM1 in human primary gastric normal and tumor tissue samples by immunohistochemistry and array-based comparative genomic hybridization (aCGH). To ascertain whether PIM1 expression predicted susceptibility to PIM1 kinase-specific inhibition, the cytotoxic effect of a previously reported PIM1-specific small molecular inhibitor (K00135) was investigated in two gastric cancer cell lines with high (IM95) and undetectable (NUGC-4) PIM1 expression levels.ResultsPIM1 expression was exclusively nuclear in normal gastric epithelial cells, while aberrant expression/localization (decreased nuclear and/or increased cytoplasmic expression) was observed in 75.6% (68/90) of the human gastric cancer tissue samples, with a significant inverse correlation between nuclear and cytoplasmic expression levels. Clinicopathological analyses revealed that decreased nuclear PIM1 expression correlated with poorer survival and greater depth of tumor invasion, while increased cytoplasmic PIM1 expression correlated inversely with the presence of lymphovascular invasion. High-level PIM1 amplification was identified in 10.5% of gastric cancers by aCGH. K00135 impaired the survival of IM95, while it had no significant effect on NUGC-4 survival.ConclusionOur findings demonstrate the clinical and therapeutic relevance of PIM1 in gastric cancers, and suggest that PIM1 represents a potential therapeutic target.