Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liang Ma is active.

Publication


Featured researches published by Liang Ma.


Molecular Cell | 2009

CUL4A Abrogation Augments DNA Damage Response and Protection against Skin Carcinogenesis

Liren Liu; Sharrell Lee; Jianxuan Zhang; Sara B. Peters; Jeffrey Hannah; Yue Zhang; Yan Yin; Andrew Koff; Liang Ma; Pengbo Zhou

It is intuitively obvious that the ability of a cell to repair DNA damage is saturable, either by limitation of enzymatic activities, the time allotted to achieve their function, or both. However, very little is known regarding the mechanisms that establish such a threshold. Here we demonstrate that the CUL4A ubiquitin ligase restricts the cellular repair capacity by orchestrating the concerted actions of nucleotide excision repair (NER) and the DNA damage-responsive G1/S checkpoint through selective degradation of the DDB2 and XPC DNA damage sensors and the p21/CIP1/WAF1 checkpoint effector. We generated Cul4a conditional knockout mice and observed that skin-specific Cul4a ablation dramatically increased resistance to UV-induced skin carcinogenesis. Our findings reveal that wild-type cells do not operate at their full DNA repair potential, underscore the critical role of CUL4A in establishing the cellular DNA repair threshold, and highlight the potential augmentation of cellular repair proficiency by pharmacological CUL4A inhibition.


The EMBO Journal | 2003

CUL-4A stimulates ubiquitylation and degradation of the HOXA9 homeodomain protein

Yue Zhang; Giovanni Morrone; Jianxuan Zhang; Xiaoai Chen; Xiaoling Lu; Liang Ma; Malcolm A. S. Moore; Pengbo Zhou

The HOXA9 homeodomain protein is a key regulator of hematopoiesis and embryonic development. HOXA9 is expressed in primitive hematopoietic cells, and its prompt downregulation is associated with myelocytic maturation. Although transcriptional inactivation of HOXA9 during hematopoietic differentiation has been established, little is known about the biochemical mechanisms underlying the subsequent removal of HOXA9 protein. Here we report that the CUL‐4A ubiquitylation machinery controls the stability of HOXA9 by promoting its ubiquitylation and proteasome‐dependent degradation. The homeodomain of HOXA9 is responsible for CUL‐4A‐mediated degradation. Interfering CUL‐4A biosynthesis by ectopic expression or by RNA‐mediated interference resulted in alterations of the steady‐state levels of HOXA9, mirrored by impairment of the ability of 32D myeloid progenitor cells to undergo proper terminal differentiation into granulocytes. These results revealed a novel regulatory mechanism of hematopoiesis by ubiquitin‐dependent proteolysis.


Development | 2009

Temporal and spatial dissection of Shh signaling in genital tubercle development

Congxing Lin; Yan Yin; G. Michael Veith; Alexander V. Fisher; Fanxin Long; Liang Ma

Genital tubercle (GT) initiation and outgrowth involve coordinated morphogenesis of surface ectoderm, cloacal mesoderm and hindgut endoderm. GT development appears to mirror that of the limb. Although Shh is essential for the development of both appendages, its role in GT development is much less clear than in the limb. Here, by removing Shh at different stages during GT development in mice, we demonstrate a continuous requirement for Shh in GT initiation and subsequent androgen-independent GT growth. Moreover, we investigated the Hh responsiveness of different tissue layers by removing or activating its signal transducer Smo with tissue-specific Cre lines, and established GT mesenchyme as the primary target tissue of Shh signaling. Lastly, we showed that Shh is required for the maintenance of the GT signaling center distal urethral epithelium (dUE). By restoring Wnt-Fgf8 signaling in Shh-/- cloacal endoderm genetically, we revealed that Shh relays its signal partly through the dUE, but regulates Hoxa13 and Hoxd13 expression independently of dUE signaling. Altogether, we propose that Shh plays a central role in GT development by simultaneously regulating patterning of the cloacal field and supporting an outgrowth signal.


Developmental Biology | 2009

Genetic interplays between Msx2 and Foxn1 are required for Notch1 expression and hair shaft differentiation

Jing Cai; Jonghyeob Lee; Raphael Kopan; Liang Ma

Hair shafts are produced from stem cells located in the bulge. Our knowledge of the genetic pathways regulating cell fate acquisition in the immediate descendents of these stem cells, and fate maintenance in their committed progeny, is still incomplete. One pathway involved in fate maintenance within the hair matrix is the Notch pathway. Here we use compound genetic mutants to demonstrate that two transcription factors, Msx2 and Foxn1, are both required to maintain Notch1 expression in the hair follicle matrix. In their absence, Notch1 is markedly reduced in hair matrix; as a consequence, medulla and inner root sheath (IRS) differentiation is impaired. Our studies also suggest that Foxn1 is a direct activator of the Notch1 promoter activity through one or more putative Foxn1 consensus binding sites located within the 4.7 kb of mouse Notch1 promoter. Since recombinant human BMP4 can induce Foxn1 expression in Msx2-deficient hair follicles, and that their effect on cortical keratin expression appears synergistic, we suggest that these two genes function in parallel pathways downstream of BMP signaling and upstream of Notch1. Independent from their role in Notch activation, Msx2 and Foxn1 also contribute to the expression of several cortical and cuticle keratins. The impact of these additional defects is the complete loss of all visible external hairs, not seen in Notch1 mutants. Our results position Msx2 and Foxn1 upstream of Notch1 within the hair matrix and demonstrate that together these factors play a pivotal role in IRS, cortex and medulla differentiation.


Developmental Biology | 2011

The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis.

Yan Yin; Congxing Lin; Sung Tae Kim; Ignasi Roig; Hong Chen; Liren Liu; George Michael Veith; Ramon U. Jin; Scott Keeney; Maria Jasin; Kelle H. Moley; Pengbo Zhou; Liang Ma

The Cullin-RING ubiquitin-ligase CRL4 controls cell cycle and DNA damage checkpoint response and ensures genomic integrity. Inactivation of the Cul4 component of the CRL4 E3 ligase complex in Caenorhabditis elegans by RNA interference results in massive mitotic DNA re-replication in the blast cells, largely due to failed degradation of the DNA licensing protein, CDT-1, and premature spermatogenesis. Here we show that inactivation of Cul4a by gene-targeting in mice only affected male but not female fertility. This male infertility phenotype resulted from a combination of decreased spermatozoa number, reduced sperm motility and defective acrosome formation. Agenesis of the mutant germ cells was accompanied by increased cell death in pachytene/diplotene cells with markedly elevated levels of phospho-p53 and CDT-1. Despite apparent normal assembly of synaptonemal complexes and DNA double strand break repair, dissociation of MLH1, a component of the late recombination nodule, was delayed in Cul4a -/- diplotene spermatocytes, which potentially led to subsequent disruptions in meiosis II and spermiogenesis. Together, our study revealed an indispensable role for Cul4a during male germ cell meiosis.


Developmental Biology | 2011

The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus

Congxing Lin; Alexander V. Fisher; Yan Yin; Takamitsu Maruyama; G. Michael Veith; Maulik Dhandha; Genkai J. Huang; Wei Hsu; Liang Ma

Proper patterning and growth of oral structures including teeth, tongue, and palate rely on epithelial-mesenchymal interactions involving coordinated regulation of signal transduction. Understanding molecular mechanisms underpinning oral-facial development will provide novel insights into the etiology of common congenital defects such as cleft palate. In this study, we report that ablating Wnt signaling in the oral epithelium blocks the formation of palatal rugae, which are a set of specialized ectodermal appendages serving as Shh signaling centers during development and niches for sensory cells and possibly neural crest related stem cells in adults. Lack of rugae is also associated with retarded anteroposterior extension of the hard palate and precocious mid-line fusion. These data implicate an obligatory role for canonical Wnt signaling in rugae development. Based on this complex phenotype, we propose that the sequential addition of rugae and its morphogen Shh, is intrinsically coupled to the elongation of the hard palate, and is critical for modulating the growth orientation of palatal shelves. In addition, we observe a unique cleft palate phenotype at the anterior end of the secondary palate, which is likely caused by the severely underdeveloped primary palate in these mutants. Last but not least, we also discover that both Wnt and Shh signalings are essential for tongue development. We provide genetic evidence that disruption of either signaling pathway results in severe microglossia. Altogether, we demonstrate a dynamic role for Wnt-β-Catenin signaling in the development of the oral apparatus.


Cell Research | 2012

Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis

Liren Liu; Yan Yin; Yuewei Li; Lisa Prevedel; Elizabeth H Lacy; Liang Ma; Pengbo Zhou

Mutations of the CUL4B ubiquitin ligase gene are causally linked to syndromic X-linked mental retardation (XLMR). However, the pathogenic role of CUL4B mutations in neuronal and developmental defects is not understood. We have generated mice with targeted disruption of Cul4b, and observed embryonic lethality with pronounced growth inhibition and increased apoptosis in extra-embryonic tissues. Cul4b, but not its paralog Cul4a, is expressed at high levels in extra-embryonic tissues post implantation. Silencing of CUL4B expression in an extra-embryonic cell line resulted in the robust accumulation of the CUL4 substrate p21Cip1/WAF and G2/M cell cycle arrest, which could be partially rescued by silencing of p21Cip1/WAF. Epiblast-specific deletion of Cul4b prevented embryonic lethality and gave rise to viable Cul4b null mice. Therefore, while dispensable in the embryo proper, Cul4b performs an essential developmental role in the extra-embryonic tissues. Our study offers a strategy to generate viable Cul4b-deficient mice to model the potential neuronal and behavioral deficiencies of human CUL4B XLMR patients.


Development | 2010

Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development

Susan M. Kiefer; Lynn Robbins; Kelly M. Stumpff; Congxing Lin; Liang Ma; Michael Rauchman

Development of the metanephric kidney depends on precise control of branching of the ureteric bud. Branching events represent terminal bifurcations that are thought to depend on unique patterns of gene expression in the tip compared with the stalk and are influenced by mesenchymal signals. The metanephric mesenchyme-derived signals that control gene expression at the ureteric bud tip are not well understood. In mouse Sall1 mutants, the ureteric bud grows out and invades the metanephric mesenchyme, but it fails to initiate branching despite tip-specific expression of Ret and Wnt11. The stalk-specific marker Wnt9b and the β-catenin downstream target Axin2 are ectopically expressed in the mutant ureteric bud tips, suggesting that upregulated canonical Wnt signaling disrupts ureter branching in this mutant. In support of this hypothesis, ureter arrest is rescued by lowering β-catenin levels in the Sall1 mutant and is phenocopied by ectopic expression of a stabilized β-catenin in the ureteric bud. Furthermore, transgenic overexpression of Wnt9b in the ureteric bud causes reduced branching in multiple founder lines. These studies indicate that Sall1-dependent signals from the metanephric mesenchyme are required to modulate ureteric bud tip Wnt patterning in order to initiate branching.


PLOS Genetics | 2013

Delineating a Conserved Genetic Cassette Promoting Outgrowth of Body Appendages

Congxing Lin; Yan Yin; Sheila M. Bell; G. Michael Veith; Hong Chen; Sung Ho Huh; David M. Ornitz; Liang Ma

The acquisition of the external genitalia allowed mammals to cope with terrestrial-specific reproductive needs for internal fertilization, and thus it represents one of the most fundamental steps in evolution towards a life on land. How genitalia evolved remains obscure, and the key to understanding this process may lie in the developmental genetics that underpins the early establishment of the genital primordium, the genital tubercle (GT). Development of the GT is similar to that of the limb, which requires precise regulation from a distal signaling epithelium. However, whether outgrowth of the GT and limbs is mediated by common instructive signals remains unknown. In this study, we used comprehensive genetic approaches to interrogate the signaling cascade involved in GT formation in comparison with limb formation. We demonstrate that the FGF ligand responsible for GT development is FGF8 expressed in the cloacal endoderm. We further showed that forced Fgf8 expression can rescue limb and GT reduction in embryos deficient in WNT signaling activity. Our studies show that the regulation of Fgf8 by the canonical WNT signaling pathway is mediated in part by the transcription factor SP8. Sp8 mutants elicit appendage defects mirroring WNT and FGF mutants, and abolishing Sp8 attenuates ectopic appendage development caused by a gain-of-function β-catenin mutation. These observations indicate that a conserved WNT-SP8-FGF8 genetic cassette is employed by both appendages for promoting outgrowth, and suggest a deep homology shared by the limb and external genitalia.


Cancer Research | 2013

Constitutive β-Catenin Activation Induces Male-Specific Tumorigenesis in the Bladder Urothelium

Congxing Lin; Yan Yin; Kristina M. Stemler; Peter A. Humphrey; Adam S. Kibel; Indira U. Mysorekar; Liang Ma

The incidence for bladder urothelial carcinoma, a common malignancy of the urinary tract, is about three times higher in men than in women. Although this gender difference has been primarily attributed to differential exposures, it is likely that underlying biologic causes contribute to the gender inequality. In this study, we report a transgenic mouse bladder tumor model upon induction of constitutively activated β-catenin signaling in the adult urothelium. We showed that the histopathology of the tumors observed in our model closely resembled that of the human low-grade urothelial carcinoma. In addition, we provided evidence supporting the KRT5-positive;KRT7-negative (KRT5(+); KRT7(-)) basal cells as the putative cells-of-origin for β-catenin-induced luminal tumor. Intriguingly, the tumorigenesis in this model showed a marked difference between opposite sexes; 40% of males developed macroscopically detectable luminal tumors in 12 weeks, whereas only 3% of females developed tumors. We investigated the mechanisms underlying this sexual dimorphism in pathogenesis and showed that nuclear translocation of the androgen receptor (AR) in the urothelial cells is a critical mechanism contributing to tumor development in male mice. Finally, we carried out global gene profiling experiments and defined the molecular signature for the β-catenin-induced tumorigenesis in males. Altogether, we have established a model for investigating sexual dimorphism in urothelial carcinoma development, and implicated synergy between β-catenin signaling and androgen/AR signaling in carcinogenesis of the basal urothelial cells.

Collaboration


Dive into the Liang Ma's collaboration.

Top Co-Authors

Avatar

Yan Yin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Congxing Lin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Chen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander V. Fisher

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

G. Michael Veith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

George Michael Veith

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Maulik Dhandha

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Adam S. Kibel

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge