Liangcheng Du
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liangcheng Du.
Trends in Plant Science | 1997
Barbara Ann Halkier; Liangcheng Du
Glucosinolates and their hydrolytic products have a wide range of effects that are of biological and economic importance. In particular, these compounds have been shown to mediate interactions between plants and pests, and to reduce the feeding quality of rapeseed meal. Significant progress has now been made in understanding the biochemistry and genetics of glucosinolate biosynthesis, and the first Arabidopsis genes involved should soon be isolated. Hence, modifying the level of glucosinolates in Brassica crops, both to study interactions with pests and to improve flavour and nutritional qualities, should soon be a realistic possibility.
Antimicrobial Agents and Chemotherapy | 2007
Fengan Yu; Kathia Zaleta-Rivera; Xiangcheng Zhu; Justin Huffman; Jeffrey C. Millet; Steven D. Harris; Gary Yuen; Xing Cong Li; Liangcheng Du
ABSTRACT A screen for antifungal compounds from Lysobacter enzymogenes strain C3, a bacterial biological control agent of fungal diseases, has previously led to the isolation of heat-stable antifungal factor (HSAF). HSAF exhibits inhibitory activities against a wide range of fungal species and shows a novel mode of antifungal action by disrupting the biosynthesis of a distinct group of sphingolipids. We have now determined the chemical structure of HSAF, which is identical to that of dihydromaltophilin, an antifungal metabolite with a unique macrocyclic lactam system containing a tetramic acid moiety and a 5,5,6-tricyclic skeleton. We have also identified the genetic locus responsible for the biosynthesis of HSAF in strain C3. DNA sequencing of this locus revealed genes for a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS), a sterol desaturase, a ferredoxin reductase, and an arginase. The disruption of the PKS-NRPS gene generated C3 mutants that lost the ability to produce HSAF and to inhibit fungal growth, demonstrating a hybrid PKS-NRPS that catalyzed the biosynthesis of the unique macrolactam system that is found in many biologically active natural products isolated from marine organisms. In addition, we have generated mutants with disrupted sterol desaturase, ferredoxin reductase, and arginase and examined the metabolites produced in these mutants. The work represents the first study of the genetic basis for the biosynthesis of the tetramic acid-containing macrolactams. The elucidation of the chemical structure of HSAF and the identification of the genetic locus for its biosynthesis establish the foundation for future exploitation of this group of compounds as new fungicides or antifungal drugs.
Journal of the American Chemical Society | 2011
Lili Lou; Guoliang Qian; Yunxuan Xie; Jiliang Hang; Haotong Chen; Kathia Zaleta-Rivera; Yaoyao Li; Yuemao Shen; Patrick H. Dussault; Fengquan Liu; Liangcheng Du
HSAF was isolated from Lysobacter enzymogenes , a bacterium used in the biological control of fungal diseases of plants. Structurally, it is a tetramic acid-containing macrolactam fused to a tricyclic system. HSAF exhibits a novel mode of action by disrupting sphingolipids important to the polarized growth of filamentous fungi. Here we describe the HSAF biosynthetic gene cluster, which contains only a single-module polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS), although the biosynthesis of HSAF apparently requires two separate polyketide chains that are linked together by one amino acid (ornithine) via two amide bonds. Flanking the PKS/NRPS are six genes that encoding a cascade of four tightly clustered redox enzymes on one side and a sterol desaturase/fatty acid hydroxylase and a ferredoxin reductase on the other side. The genetic data demonstrate that the four redox genes, in addition to the PKS/NRPS gene and the sterol desaturase/fatty acid hydroxylase gene, are required for HSAF production. The biochemical data show that the adenylation domain of the NRPS specifically activates L-ornithine and that the four-domain NRPS is able to catalyze the formation of a tetramic acid-containing product from acyl-S-ACP and ornithinyl-S-NRPS. These results reveal a previously unrecognized biosynthetic mechanism for hybrid PK/NRP in prokaryotic organisms.
Natural Product Reports | 2012
Yunxuan Xie; Stephen Wright; Yuemao Shen; Liangcheng Du
The gliding Gram-negative Lysobacter bacteria are emerging as a promising source of new bioactive natural products. These ubiquitous freshwater and soil microorganisms are fast growing, simple to use and maintain, and genetically amenable for biosynthetic engineering. This Highlight reviews a group of biologically active and structurally distinct natural products from the genus Lysobacter, with a focus on their biosyntheses. Although Lysobacter sp. are known as prolific producers of bioactive natural products, detailed molecular mechanistic studies of their enzymatic assembly have been surprisingly scarce. We hope to provide a snapshot of the important work done on the lysobacterial natural products and to provide useful information for future biosynthetic engineering of novel antibiotics in Lysobacter.
Biopolymers | 2010
Justin Huffman; Ryan Gerber; Liangcheng Du
Polyketides (PKs) are a large group of natural products produced by microorganisms and plants. They are biopolymers of acetate and other short carboxylates and are biosynthesized by multifunctional enzymes called polyketide synthases (PKSs). This review discusses the biosynthesis of four toxic PK, aflatoxins, fumonisins, ochratoxins (OTs), and zearalenone. These metabolites are structurally diverse and differ in their mechanisms of toxicity. However, they are all of concern in food safety and agriculture because of their toxic properties and their frequent accumulation in crops used for food and feed. The focus is on the recent advancements in the understanding of the molecular mechanisms for the biosynthesis of these mycotoxins. Several of the mycotoxin PKSs have been genetically and biochemically studied while other PKSs remain to be investigated. Multiple post‐PKS modifications are often required for the maturation of the mycotoxins. Many of these modification steps for aflatoxins and fumonisins are well established while the post‐PKS modifications for zearalenone and OTs remain to be biochemically characterized. More efforts are needed to completely illustrate the biosynthetic mechanisms for this important group of PKs.
Phytochemistry | 1998
Liangcheng Du; Barbara Ann Halkier
Abstract When [ 14 C]tyrosine was administered to developing seeds and silique walls of Sinapis alba L. both tissues de novo synthesized p -hydroxybenzylglucosinolate ( p -OHBG). Within a silique, the incorporation rate of tyrosine to p -OHBG was up to 70-fold higher in the silique walls compared to the seeds as evidenced by both in vivo and in vitro measurements. During development, the amount of p -OHBG increases in the seeds, whereas the level remains relatively constant in the corresponding walls in radioisotope feeding experiments using intact siliques. This shows that p -OHBG is translocated from the walls to the seeds in S. alba . Although translocation is a major contributor to glucosinolate accumulation in the seeds, we also demonstrate that seeds of S. alba contain all the enzymes required for de novo biosynthesis of p -OHBG.
Phytochemistry | 1995
Liangcheng Du; Mpoko Bokanga; Birger Lindberg Møller; Barbara Ann Halkier
Abstract Linamarin is the main cyanogenic glucoside of cassava. De novo synthesis of linamarin in cassava roots was demonstrated in vivo by feeding [ 14 C]valine to excited segments of phelloderm. In vitro , a microsomal enzyme system isolated from cassava roots was shown to catalyse the conversion of valine to acetone cyanohydrin, the aglucone of linamarin. An antibody raised against cytochrome P450 TYR , the enzyme which catalyses the initial step in the biosynthesis of the cyanogenic glucoside dhurrin in sorghum, cross-reacts with a major polypeptide of similar molecular mass in cassava microsomes. Cyanogenic glucosides are known to accumulate in cassava roots, but hitherto de novo synthesis has only been demonstrated in the leaves, suggesting translocation of cyanogenic glucosides from leaves to roots. Our results show that at least part of the cyanogenic glucosides are synthesized in the roots. The data demonstrate that acyanogenic cassava roots cannot be obtained solely by blocking the transport of cyanogenic glucosides to the roots from other parts of the cassava plant.
Antimicrobial Agents and Chemotherapy | 2011
Wei Zhang; Yaoyao Li; Guoliang Qian; Yan Wang; Haotong Chen; Yue-zhong Li; Fengquan Liu; Yuemao Shen; Liangcheng Du
ABSTRACT Lysobactor enzymogenes strain OH11 is an emerging biological control agent of fungal and bacterial diseases. We recently completed its genome sequence and found it contains a large number of gene clusters putatively responsible for the biosynthesis of nonribosomal peptides and polyketides, including the previously identified antifungal dihydromaltophilin (HSAF). One of the gene clusters contains two huge open reading frames, together encoding 12 modules of nonribosomal peptide synthetases (NRPS). Gene disruption of one of the NRPS led to the disappearance of a metabolite produced in the wild type and the elimination of its antibacterial activity. The metabolite and antibacterial activity were also affected by the disruption of some of the flanking genes. We subsequently isolated this metabolite and subjected it to spectroscopic analysis. The mass spectrometry and nuclear magnetic resonance data showed that its chemical structure is identical to WAP-8294A2, a cyclic lipodepsipeptide with potent anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and currently in phase I/II clinical trials. The WAP-8294A2 biosynthetic genes had not been described previously. So far, the Gram-positive Streptomyces have been the primary source of anti-infectives. Lysobacter are Gram-negative soil/water bacteria that are genetically amendable and have not been well exploited. The WAP-8294A2 synthetase represents one of the largest NRPS complexes, consisting of 45 functional domains. The identification of these genes sets the foundation for the study of the WAP-8294A2 biosynthetic mechanism and opens the door for producing new anti-MRSA antibiotics through biosynthetic engineering in this new source of Lysobacter.
Plant Physiology | 1996
Liangcheng Du; Barbara Ann Halkier
An in vitro system that converts phenylalanine to phenylacetaldoxime in the biosynthesis of the glucosinolate glucotropaeolin has been established in seedlings of Tropaeolum majus L. exposed to the combined treatment of jasmonic acid, ethanol, and light. The treatment resulted in a 9-fold induction, compared with untreated, dark-grown seedlings, of de novo biosynthesis measured as incorporation of radioactively labeled phenylalanine into glucotropaeolin. Formation of the inhibitory degradation product benzylisothiocyanate during tissue homogenization was prevented by inactivation of the thioglucosidase myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. This allowed the isolation of a biosynthetically active microsomal preparation from the induced T. majus plant material. The enzyme, which catalyzes the conversion of phenylalanine to the corresponding oxime, was sensitive to cytochrome P450 inhibitors, indicating the involvement of a cytochrome P450 in the biosynthetic pathway. It has previously been shown that the oxime-producing enzyme in the biosynthesis of p-hydroxybenzylglucosinolate in Sinapis alba L. is dependent on cytochrome P450, whereas the oxime-producing enzymes in Brassica species have been suggested to be flavin monooxygenases or peroxidase-type enzymes. The result with T. majus provides additional experimental documentation for a similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glucosides.
Applied and Environmental Microbiology | 2004
Yousong Ding; Ravi S. Bojja; Liangcheng Du
ABSTRACT Fumonisins are polyketide-derived mycotoxins produced by several agriculturally important Fusarium species. The B series fumonisins, FB1, FB2, FB3, and FB4, are fumonisins produced by wild-type Fusarium verticillioides strains, differing in the number and location of hydroxyl groups attached to the carbon backbone. We characterized the protein encoded by FUM3, a gene in the fumonisin biosynthetic gene cluster. The 33-kDa FUM3 protein (Fum3p) was heterologously expressed and purified from Saccharomyces cerevisiae. Yeast cells expressing the Fum3p converted FB3 to FB1, indicating that Fum3p catalyzes the C-5 hydroxylation of fumonisins. This result was verified by assaying the activity of Fum3p purified from yeast cells. The C-5 hydroxylase activity of purified Fum3p required 2-ketoglutarate, Fe2+, ascorbic acid, and catalase, all of which are required for 2-ketoglutarate-dependent dioxygenases. The protein also contains two His motifs that are highly conserved in this family of dioxygenases. Thus, Fum3p is a 2-ketoglutarate-dependent dioxygenase required for the addition of the C-5 hydroxyl group of fumonisins.