Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lianming Tong is active.

Publication


Featured researches published by Lianming Tong.


Journal of the American Chemical Society | 2016

Optical Anisotropy of Black Phosphorus in the Visible Regime

Nannan Mao; Jingyi Tang; Liming Xie; Juanxia Wu; Bowen Han; Jingjing Lin; Shibin Deng; Wei Ji; Hua Xu; Kaihui Liu; Lianming Tong; Jin Zhang

The striking in-plane anisotropy remains one of the most intriguing properties for the newly rediscovered black phosphorus (BP) 2D crystals. However, because of its rather low-energy band gap, the optical anisotropy of few-layer BP has been primarily investigated in the near-infrared (NIR) regime. Moreover, the essential physics that determine the intrinsic anisotropic optical property of few-layer BP, which is of great importance for practical applications in optical and optoelectronic devices, are still in the fancy of theory. Herein, we report the direct observation of the optical anisotropy of few-layer BP in the visible regime simply by using polarized optical microscopy. On the basis of the Fresnel equation, the intrinsic anisotropic complex refractive indices (n-iκ) in the visible regime (480-650 nm) were experimentally obtained for the first time using the anisotropic optical contrast spectra. Our findings not only provide a convenient approach to measure the optical constants of 2D layered materials but also suggest a possibility to design novel BP-based photonic devices such as atom-thick light modulators, including linear polarizer, phase plate, and optical compensator in a broad spectral range extending to the visible window.


Nature | 2017

Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts

Shuchen Zhang; Lixing Kang; Xiao Wang; Lianming Tong; Liangwei Yang; Zequn Wang; Kuo Qi; Shibin Deng; Qingwen Li; Xuedong Bai; Feng Ding; Jin Zhang

The semiconductor industry is increasingly of the view that Moore’s law—which predicts the biennial doubling of the number of transistors per microprocessor chip—is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved. Here we show that horizontal SWNT arrays with predicted chirality can be grown from the surfaces of solid carbide catalysts by controlling the symmetries of the active catalyst surface. We obtained horizontally aligned metallic SWNT arrays with an average density of more than 20 tubes per micrometre in which 90 per cent of the tubes had chiral indices of (12, 6), and semiconducting SWNT arrays with an average density of more than 10 tubes per micrometre in which 80 per cent of the nanotubes had chiral indices of (8, 4). The nanotubes were grown using uniform size Mo2C and WC solid catalysts. Thermodynamically, the SWNT was selectively nucleated by matching its structural symmetry and diameter with those of the catalyst. We grew nanotubes with chiral indices of (2m, m) (where m is a positive integer), the yield of which could be increased by raising the concentration of carbon to maximize the kinetic growth rate in the chemical vapour deposition process. Compared to previously reported methods, such as cloning, seeding and specific-structure-matching growth, our strategy of controlling the thermodynamics and kinetics offers more degrees of freedom, enabling the chirality of as-grown SWNTs in an array to be tuned, and can also be used to predict the growth conditions required to achieve the desired chiralities.


Journal of the American Chemical Society | 2015

Diameter-Specific Growth of Semiconducting SWNT Arrays Using Uniform Mo2C Solid Catalyst.

Shuchen Zhang; Lianming Tong; Yue Hu; Lixing Kang; Jin Zhang

Semiconducting single-walled nanotube (s-SWNT) arrays with specific diameters are urgently demanded in the applications in nanoelectronic devices. Herein, we reported that by using uniform Mo2C solid catalyst, aligned s-SWNT (∼90%) arrays with narrow-diameter distribution (∼85% between 1.0 and 1.3 nm) on quartz substrate can be obtained. Mo2C nanoparticles with monodisperse sizes were prepared by using molybdenum oxide-based giant clusters, (NH4)42[Mo132O372(H3CCOO)30(H2O)72]·10H3CCOONH4·300H2O(Mo132), as the precursor that was carburized by a gas mixture of C2H5OH/H2 during a temperature-programmed reduction. In this approach, the formation of volatile MoO3 was inhibited due to the annealing and reduction at a low temperature. As a result, uniform Mo2C nanoparticles are formed, and their narrow size-dispersion strictly determines the diameter distribution of SWNTs. During the growth process, Mo2C selectively catalyzes the scission of C-O bonds of ethanol molecules, and the resultant absorbed oxygen (Oads) preferentially etches metallic SWNTs (m-SWNTs), leading to the high-yield of s-SWNTs. Raman spectroscopic analysis showed that most of the s-SWNTs can be identified as (14, 4), (13, 6), or (10, 9) tubes. Our findings open up the possibility of the chirality-controlled growth of aligned-SWNTs using uniform carbide nanoparticles as solid catalysts for practical nanoelectronics applications.


Journal of the American Chemical Society | 2015

Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials.

Jingjing Lin; Liangbo Liang; Xi Ling; Shuqing Zhang; Nannan Mao; Na Zhang; Bobby G. Sumpter; Vincent Meunier; Lianming Tong; Jin Zhang

Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structures, including orthorhombic black phosphorus (BP) and triclinic rhenium disulfide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions between the 2D materials and molecules are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.


Small | 2016

Birefringence-Directed Raman Selection Rules in 2D Black Phosphorus Crystals.

Nannan Mao; Juanxia Wu; Bowen Han; Jingjing Lin; Lianming Tong; Jin Zhang

The incident and scattered light engaged in the Raman scattering process of low symmetry crystals always suffer from the birefringence-induced depolarization. Therefore, for anisotropic crystals, the classical Raman selection rules should be corrected by taking the birefringence effect into consideration. The appearance of the 2D anisotropic materials provides an excellent platform to explore the birefringence-directed Raman selection rules, due to its controllable thickness at the nanoscale that greatly simplifies the situation comparing with bulk materials. Herein, a theoretical and experimental investigation on the birefringence-directed Raman selection rules in the anisotropic black phosphorus (BP) crystals is presented. The abnormal angle-dependent polarized Raman scattering of the Ag modes in thin BP crystal, which deviates from the normal Raman selection rules, is successfully interpreted by the theoretical model based on birefringence. It is further confirmed by the examination of different Raman modes using different laser lines and BP samples of different thicknesses.


Advanced Materials | 2017

Architecture of β-Graphdiyne-Containing Thin Film Using Modified Glaser–Hay Coupling Reaction for Enhanced Photocatalytic Property of TiO2

Jiaqiang Li; Ziqian Xie; Yan Xiong; Zhenzhu Li; Qunxing Huang; Shuqing Zhang; Jingyuan Zhou; Rong Liu; Xin Gao; Changguo Chen; Lianming Tong; Jin Zhang; Zhongfan Liu

β-Graphdiyne (β-GDY) is a member of 2D graphyne family with zero band gap, and is a promising material with potential applications in energy storage, organic electronics, etc. However, the synthesis of β-GDY has not been realized yet, and the measurement of its intrinsic properties remains elusive. In this work, β-GDY-containing thin film is successfully synthesized on copper foil using modified Glaser-Hay coupling reaction with tetraethynylethene as precursor. The as-grown carbon film has a smooth surface and is continuous and uniform. Electrical measurements reveal the conductivity of 3.47 × 10-6 S m-1 and the work function of 5.22 eV. TiO2 @β-GDY nanocomposite is then prepared and presented with an enhancement of photocatalytic ability compared to pure TiO2 .


ACS Nano | 2017

Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2

Shishu Zhang; Nannan Mao; Na Zhang; Juanxia Wu; Lianming Tong; Jin Zhang

The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS2) and show a large circular intensity differential (CID) of Raman scattering in ReS2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.


Small | 2017

In-Plane Uniaxial Strain in Black Phosphorus Enables the Identification of Crystalline Orientation

Shuqing Zhang; Nannan Mao; Juanxia Wu; Lianming Tong; Jin Zhang; Zhirong Liu

Identification of the crystalline axis of anisotropic black phosphorus (BP) is important for investigating its physical properties, as well as for optical and electronic applications. Herein, it is showed that by applying in-plane uniaxial strain and measuring the changes of the Raman shifts, the crystalline axis of BP can be reliably determined. The strain effects on the Raman shifts are angle-dependent, and they can be expressed as a combination of the Raman responses under zigzag and armchair strain. Differing from previous polarized optical spectroscopic methods where the Raman intensity is analyzed, the proposed method uses the Raman frequency shift, which is less affected by laser polarization, excitation wavelength, the sample thickness, and the substrate. The effective strain applied on BP from the stretched substrate is estimated, and the results show that only 20 to 40% of the strain can be effectively transferred to BP flakes from a polyethylene terephthalate substrate. Our method provides not only an effective and robust approach to identify the crystalline orientation of layered BP, but it is also a model to extract additional information in strain-related studies. It can also be extended to other 2D anisotropic materials.


Science Advances | 2018

Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy

Xin Gao; Yihan Zhu; Ding Yi; Jingyuan Zhou; Shishu Zhang; Chen Yin; Feng Ding; Shuqing Zhang; Xiaohui Yi; Jizheng Wang; Lianming Tong; Yu Han; Zhongfan Liu; Jin Zhang

A trilayer single-crystalline GDY film on graphene was prepared through a solution-phase van der Waals epitaxial strategy. Graphdiyne (GDY) is an ordered two-dimensional (2D) carbon allotrope comprising sp- and sp2-hybridized carbon atoms with high degrees of π-conjugation, which features a natural band gap and superior electric properties. However, the synthesis of one- or few-layer GDY remains challenging because of the free rotation around alkyne-aryl single bonds and the lack of thickness control. We report the facile synthesis of an ultrathin single-crystalline GDY film on graphene through a solution-phase van der Waals epitaxial strategy. The weak admolecule-substrate interaction at the heterojunction drastically relaxes the large lattice mismatch between GDY and graphene. It allows the fast in-plane coupling of admolecules and slow out-of-plane growth toward the formation of an incommensurately stacked heterostructure, which is composed of single-layer graphene and few-layer ABC-stacked GDY, as directly observed by electron microscopy and identified from Raman fingerprints. This study provides a general route not only to the bottom-up synthesis of intriguing 2D acetylenic carbon allotropes but also to the device fabrication for the direct measurement of their intrinsic electrical, mechanical, and thermal properties.


ACS Applied Materials & Interfaces | 2018

Template Synthesis of an Ultrathin β-Graphdiyne-Like Film Using the Eglinton Coupling Reaction

Jiaqiang Li; Yan Xiong; Ziqian Xie; Xin Gao; Jingyuan Zhou; Chen Yin; Lianming Tong; Changguo Chen; Zhongfan Liu; Jin Zhang

β-Graphdiyne (β-GDY) is a two-dimensional carbon material with zero band gap and highly intrinsic carrier mobility and a promising material with potential applications in electronic devices. However, the synthesis of continuous single or ultrathin β-GDY has not been realized yet. Here, we proposed an approach for ultrathin β-GDY-like film synthesis using graphene as a template because of the strong π-π interaction between β-GDY and graphene. The as-synthesized film presents smooth and continuous morphology and has good crystallinity. Electrical measurement reveals that the film presented a conductivity of 1.30 × 10-2 S·m-1 by fabricating electronic devices on β-GDY grown on a dielectric hexagonal boron nitride template.

Collaboration


Dive into the Lianming Tong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge