Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lianne Hoeijmakers is active.

Publication


Featured researches published by Lianne Hoeijmakers.


Hippocampus | 2015

Chronic Early Life Stress Alters Developmental and Adult Neurogenesis and Impairs Cognitive Function in Mice

E.F.G. Naninck; Lianne Hoeijmakers; Nefeli Kakava-Georgiadou; Astrid Meesters; Stanley E. Lazic; Paul J. Lucassen; Aniko Korosi

Early life stress (ES) increases vulnerability to psychopathology and impairs cognition in adulthood. These ES‐induced deficits are associated with lasting changes in hippocampal plasticity. Detailed information on the neurobiological basis, the onset, and progression of such changes and their sex‐specificity is currently lacking but is required to tailor specific intervention strategies. Here, we use a chronic ES mouse model based on limited nesting and bedding material from postnatal day (P) 2–9 to investigate; (1) if ES leads to impairments in hippocampus‐dependent cognitive function in adulthood and (2) if these alterations are paralleled by changes in developmental and/or adult hippocampal neurogenesis. ES increased developmental neurogenesis (proliferation and differentiation) in the dentate gyrus (DG) at P9, and the number of immature (NeurD1+) cells migrating postnatally from the secondary dentate matrix, indicating prompt changes in DG structure in both sexes. ES lastingly reduced DG volume and the long‐term survival of developmentally born neurons in both sexes at P150. In adult male mice only, ES reduced survival of adult‐born neurons (BrdU/NeuN+ cells), while proliferation (Ki67+) and differentiation (DCX+) were unaffected. These changes correlated with impaired performance in all learning and memory tasks used here. In contrast, in female mice, despite early alterations in developmental neurogenesis, no lasting changes were present in adult neurogenesis after ES and the cognitive impairments were less prominent and only apparent in some cognitive tasks. We further show that, although neurogenesis and cognition correlate positively, only the hippocampus‐dependent functions depend on changes in neurogenesis, whereas cognitive functions that are not exclusively hippocampus‐dependent do not. This study indicates that chronic ES has lasting consequences on hippocampal structure and function in mice and suggests that male mice are more susceptible to ES than females. Unraveling the mechanisms that underlie the persistent ES‐induced effects may have clinical implications for treatments to counteract ES‐induced deficits.


Frontiers in Molecular Neuroscience | 2015

The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function

Lianne Hoeijmakers; Paul J. Lucassen; Aniko Korosi

Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.


Frontiers in Human Neuroscience | 2016

Microglial priming and Alzheimer’s disease: a possible role for (early) immune challenges and epigenetics?

Lianne Hoeijmakers; Yvonne Heinen; Anne-Marie van Dam; Paul J. Lucassen; Aniko Korosi

Neuroinflammation is thought to contribute to Alzheimer’s disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g., during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that: (1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology; and (2) that “priming” of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD.


Science Signaling | 2015

Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine

Nils C. Gassen; Gabriel Rodrigo Fries; Anthony S. Zannas; Jakob Hartmann; Jürgen Zschocke; Kathrin Hafner; Tania Carrillo-Roa; Jessica Steinbacher; S. Nicole Preißinger; Lianne Hoeijmakers; M. Knop; Frank Weber; Stefan Kloiber; Susanne Lucae; George P. Chrousos; Thomas Carell; Marcus Ising; Elisabeth B. Binder; Mathias V. Schmidt; Joëlle Rüegg; Theo Rein

Chaperone switching at the kinase CDK5 mediates epigenetic effects of antidepressants. Antidepressants chaperone DNA methylation Epigenetic changes are associated with depression. Some depressed patients have increased DNA methylation and decreased expression of the gene encoding BDNF, a secreted factor important for synaptic plasticity. Rein et al. found that some antidepressants inhibit epigenetic changes by causing a switch in chaperone binding to the DNA methyltransferase DNMT1. The chaperones FKBP51 and FKBP52 competed for binding to CDK5, a kinase that activates DNMT1. The authors found that cells from depressed patients or cultured mouse astrocytes exposed to the antidepressant paroxetine favored the FKBP51-CDK5 interaction, resulting in reduced activity of DNMT1 and DNA methylation, and increased the expression of BDNF. These effects of paroxetine on patient blood cells isolated before therapy correlated with a positive clinical response to antidepressants, suggesting that a simple blood test may aid in personalizing treatment for depression. Epigenetic processes, such as DNA methylation, and molecular chaperones, including FK506-binding protein 51 (FKBP51), are independently implicated in stress-related mental disorders and antidepressant drug action. FKBP51 associates with cyclin-dependent kinase 5 (CDK5), which is one of several kinases that phosphorylates and activates DNA methyltransferase 1 (DNMT1). We searched for a functional link between FKBP51 (encoded by FKBP5) and DNMT1 in cells from mice and humans, including those from depressed patients, and found that FKBP51 competed with its close homolog FKBP52 for association with CDK5. In human embryonic kidney (HEK) 293 cells, expression of FKBP51 displaced FKBP52 from CDK5, decreased the interaction of CDK5 with DNMT1, reduced the phosphorylation and enzymatic activity of DNMT1, and diminished global DNA methylation. In mouse embryonic fibroblasts and primary mouse astrocytes, FKBP51 mediated several effects of paroxetine, namely, decreased the protein-protein interactions of DNMT1 with CDK5 and FKBP52, reduced phosphorylation of DNMT1, and decreased the methylation and increased the expression of the gene encoding brain-derived neurotrophic factor (Bdnf). In human peripheral blood cells, FKBP5 expression inversely correlated with both global and BDNF methylation. Peripheral blood cells isolated from depressed patients that were then treated ex vivo with paroxetine revealed that the abundance of BDNF positively correlated and phosphorylated DNMT1 inversely correlated with that of FKBP51 in cells and with clinical treatment success in patients, supporting the relevance of this FKBP51-directed pathway that prevents epigenetic suppression of gene expression.


The Journal of Neuroscience | 2015

Pharmacological Inhibition of the Psychiatric Risk Factor FKBP51 Has Anxiolytic Properties

Jakob Hartmann; Klaus V. Wagner; Steffen Gaali; Alexander Kirschner; Christian Kozany; Gerd Rühter; Nina Dedic; Alexander S. Häusl; Lianne Hoeijmakers; Sören Westerholz; Christian Namendorf; Tamara Gerlach; Manfred Uhr; Alon Chen; Jan M. Deussing; Florian Holsboer; Felix Hausch; Mathias V. Schmidt

Anxiety-related psychiatric disorders represent one of the largest health burdens worldwide. Single nucleotide polymorphisms of the FK506 binding protein 51 (FKBP51) gene have been repeatedly associated with anxiety-related disorders and stress sensitivity. Given the intimate relationship of stress and anxiety, we hypothesized that amygdala FKBP51 may mediate anxiety-related behaviors. Mimicking the stress effect by specifically overexpressing FKBP51 in the basolateral amygdala (BLA) or central amygdala resulted in increased anxiety-related behavior, respectively. In contrast, application of a highly selective FKBP51 point mutant antagonist, following FKBP51mut BLA-overexpression, reduced the anxiogenic phenotype. We subsequently tested a novel FKBP51 antagonist, SAFit2, in wild-type mice via BLA microinjections, which reduced anxiety-related behavior. Remarkably, the same effect was observed following peripheral administration of SAFit2. To our knowledge, this is the first in vivo study using a specific FKBP51 antagonist, thereby unraveling the role of FKBP51 and its potential as a novel drug target for the improved treatment of anxiety-related disorders.


Brain Behavior and Immunity | 2017

Early-life stress lastingly alters the neuroinflammatory response to amyloid pathology in an Alzheimer's disease mouse model

Lianne Hoeijmakers; Silvie R. Ruigrok; Anna Amelianchik; Daniela Ivan; Anne-Marie van Dam; Paul J. Lucassen; Aniko Korosi

Exposure to stress during the sensitive period of early-life increases the risk to develop cognitive impairments and psychopathology later in life. In addition, early-life stress (ES) exposure, next to genetic causes, has been proposed to modulate the development and progression of Alzheimers disease (AD), however evidence for this hypothesis is currently lacking. We here tested whether ES modulates progression of AD-related neuropathology and assessed the possible contribution of neuroinflammatory factors in this. We subjected wild-type (WT) and transgenic APP/PS1 mice, as a model for amyloid neuropathology, to chronic ES from postnatal day (P)2 to P9. We next studied how ES exposure affected; 1) amyloid β (Aβ) pathology at an early (4month old) and at a more advanced pathological (10month old) stage, 2) neuroinflammatory mediators immediately after ES exposure as well as in adult WT mice, and 3) the neuroinflammatory response in relation to Aβ neuropathology. ES exposure resulted in a reduction of cell-associated amyloid in 4month old APP/PS1 mice, but in an exacerbation of Aβ plaque load at 10months of age, demonstrating that ES affects Aβ load in the hippocampus in an age-dependent manner. Interestingly, ES modulated various neuroinflammatory mediators in the hippocampus of WT mice as well as in response to Aβ neuropathology. In WT mice, immediately following ES exposure (P9), Iba1-immunopositive microglia exhibited reduced complexity and hippocampal interleukin (IL)-1β expression was increased. In contrast, microglial Iba1 and CD68 were increased and hippocampal IL-6 expression was decreased at 4months, while these changes resolved by 10months of age. Finally, Aβ neuropathology triggered a neuroinflammatory response in APP/PS1 mice that was altered after ES exposure. APP/PS1 mice exhibited increased CD68 expression at 4months, which was further enhanced by ES, whereas the microglial response to Aβ neuropathology, as measured by Iba1 and CD11b, was less prominent after ES at 10months of age. Finally, the hippocampus appears to be more vulnerable for these ES-induced effects, since ES did not affect Aβ neuropathology and neuroinflammation in the entorhinal cortex of adult ES exposed mice. Overall, our results demonstrate that ES exposure has both immediate and lasting effects on the neuroinflammatory response. In the context of AD, such alterations in neuroinflammation might contribute to aggravated neuropathology in ES exposed mice, hence altering disease progression. This indicates that, at least in a genetic context, ES could aggravate AD pathology.


Molecular Psychiatry | 2017

Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor

Jakob Hartmann; Nina Dedic; Max Pöhlmann; Alexander S. Häusl; Henk Karst; C Engelhardt; Sören Westerholz; Klaus V. Wagner; Christiana Labermaier; Lianne Hoeijmakers; M Kertokarijo; Alon Chen; Marian Joëls; Jan M. Deussing; Mathias V. Schmidt

Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in anxiety disorders, the stress system has been directly implicated in the pathophysiology of these complex mental illnesses. The glucocorticoid receptor (GR) is the major receptor for the stress hormone cortisol (corticosterone in rodents) and is widely expressed in excitatory and inhibitory neurons, as well as in glial cells. However, currently it is unknown which of these cell populations mediate GR actions that eventually regulate fear- and anxiety-related behaviors. In order to address this question, we generated mice lacking the receptor specifically in forebrain glutamatergic or GABAergic neurons by breeding GRflox/flox mice to Nex-Cre or Dlx5/6-Cre mice, respectively. GR deletion specifically in glutamatergic, but not in GABAergic, neurons induced hypothalamic–pituitary–adrenal axis hyperactivity and reduced fear- and anxiety-related behavior. This was paralleled by reduced GR-dependent electrophysiological responses in the basolateral amygdala (BLA). Importantly, viral-mediated GR deletion additionally showed that fear expression, but not anxiety, is regulated by GRs in glutamatergic neurons of the BLA. This suggests that pathological anxiety likely results from altered GR signaling in glutamatergic circuits of several forebrain regions, while modulation of fear-related behavior can largely be ascribed to GR signaling in glutamatergic neurons of the BLA. Collectively, our results reveal a major contribution of GRs in the brain’s key excitatory, but not inhibitory, neurotransmitter system in the regulation of fear and anxiety behaviors, which is crucial to our understanding of the molecular mechanisms underlying anxiety disorders.


PLOS ONE | 2014

Depletion of FKBP51 in female mice shapes HPA axis activity.

Lianne Hoeijmakers; Daniela Harbich; Bianca Schmid; Paul J. Lucassen; Klaus V. Wagner; Mathias V. Schmidt; Jakob Hartmann

Psychiatric disorders such as depressive disorders and posttraumatic stress disorder are a major disease burden worldwide and have a higher incidence in women than in men. However, the underlying mechanism responsible for the sex-dependent differences is not fully understood. Besides environmental factors such as traumatic life events or chronic stress, genetic variants contribute to the development of such diseases. For instance, variations in the gene encoding the FK506 binding protein 51 (FKBP51) have been repeatedly associated with mood and anxiety. FKBP51 is a negative regulator of the glucocorticoid receptor and thereby of the hypothalamic–pituitary–adrenal axis that also interacts with other steroid hormone receptors such as the progesterone and androgen receptors. Thus, the predisposition of women to psychiatric disorders and the interaction of female hormones with FKBP51 and the glucocorticoid receptor implicate a possible difference in the regulation of the hypothalamic–pituitary–adrenal axis in female FKBP51 knockout (51KO) mice. Therefore, we investigated neuroendocrine, behavioural and physiological alterations relevant to mood disorders in female 51KO mice. Female 51KOs and wild type littermates were subjected to various behavioural tests, including the open field, elevated plus maze and forced swim test. The neuroendocrine profile was investigated under basal conditions and in response to an acute stressor. Furthermore, we analysed the mRNA expression levels of the glucocorticoid receptor and corticotrophin release hormone in different brain regions. Overall, female 51KO mice did not display any overt behavioural phenotype under basal conditions, but showed a reduced basal hypothalamic–pituitary–adrenal axis activity, a blunted response to, and an enhanced recovery from, acute stress. These characteristics strongly overlap with previous studies in male 51KO mice indicating that FKBP51 shapes the behavioural and neuroendocrine phenotype independent of the sex of the individual.


CNS Drugs | 2017

Targeting Neuroinflammation to Treat Alzheimer’s Disease

A. Ardura-Fabregat; Erik Boddeke; A. Boza-Serrano; S. Brioschi; S. Castro-Gomez; K. Ceyzériat; C. Dansokho; T. Dierkes; G. Gelders; Michael T. Heneka; Lianne Hoeijmakers; A. Hoffmann; L. Iaccarino; S. Jahnert; K. Kuhbandner; G. Landreth; N. Lonnemann; P. A. Löschmann; R. M. McManus; A. Paulus; K. Reemst; J. M. Sanchez-Caro; A. Tiberi; A. van der Perren; A. Vautheny; Carmen Venegas; A. Webers; Patrick Weydt; Teodora Stella Wijasa; X. Xiang

Over the past few decades, research on Alzheimer’s disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that—upon engagement of pattern recognition receptors—induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.


Molecular Reproduction and Development | 2016

Epigenetic imprinting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state

Lianne Hoeijmakers; Hermannus Kempe; Pernette J. Verschure

Assisted reproductive technology (ART) exposes gametes and embryos to an artificial environment that does not resemble the conditions of natural conception, and therefore might change epigenetic regulation of genes that are imprinted during development. In the present review, we discuss the relationship between susceptibility of specific genes to receive an altered epigenetic composition during ART processes, possibly via alterations in the biochemical folate and methionine cycle. We provide a comprehensive view of the current state of epigenetic patterning in ART‐conceived healthy children and in Angelman syndrome (AS) and Beckwith–Wiedemann syndrome (BWS) patients. We illustrate that similar genes—that is, MEST, KCNQ1OT1, and IGF2—possess an altered DNA methylation profile in animal models, ART‐conceived healthy children, and AS and BWS patients. The developmental stage at which these genes receive their epigenetic imprint appears to coincide with the specific moment that ART takes place. We highlight that ART procedures affect physiological levels of enzymes and substrates involved in the folate and methionine cycle thereby altering the DNA methylation state. Moreover, although the DNA methylation rate appears to be robust: (i) temporal imbalances coinciding with defined moments of epigenetic imprinting of specific genes affect the eventual DNA methylation state of those genes and (ii) cumulative ART effects on methionine and folate cycling can alter DNA methylation rates. These observations underscore the necessity to further investigate consequences of ART treatments on the epigenetic profile. Mol. Reprod. Dev. 83: 94–107, 2016.

Collaboration


Dive into the Lianne Hoeijmakers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aniko Korosi

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Marie van Dam

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge