Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lianxin Liu is active.

Publication


Featured researches published by Lianxin Liu.


International Journal of Cancer | 2010

Role of microRNA in anticancer drug resistance

Tongsen Zheng; Jiabei Wang; Xi Chen; Lianxin Liu

Chemotherapy has been widely used in treatment of cancer, both as systemic therapy and as part of local treatment. Unfortunately, many kinds of cancer are still refractory to chemotherapy. The anticancer drug resistance mechanisms have been extensively explored, yet have not been fully characterized. Recent works have underlined the involvement of noncoding RNAs in cancer development, with several studies regarding their possible involvement in the evolution of drug resistance. MicroRNAs (miRNAs) are endogenous small noncoding RNAs (20–23 nucleotides) that negatively regulate the gene expressions at the post‐transcriptional level by base pairing to the 3′ untranslated region of target messenger RNAs. Evidence is emerging that particular microRNAs (miRNA) alterations are involved in the initiation and progression of human cancer. More recently, accumulating evidence is revealing an important role of miRNAs in anticancer drug resistance and miRNA expression profiling can be correlated with the development of anticancer drug resistance. The micro‐RNA‐mediated form of drug resistance adds yet another mechanism of drug resistance. So, exploiting the emerging knowledge of miRNAs for the development of new human therapeutic applications for overcoming anticancer drug resistance will be important.


Nature Communications | 2013

Tumour-associated mutant p53 drives the Warburg effect

Cen Zhang; Juan Liu; Yingjian Liang; Rui Wu; Yuhan Zhao; Xuehui Hong; Meihua Lin; Haiyang Yu; Lianxin Liu; Arnold J. Levine; Wenwei Hu; Zhaohui Feng

Tumor cells primarily utilize aerobic glycolysis for energy production, a phenomenon known as the Warburg effect. Its mechanism is not well-understood. The tumor suppressor gene p53 is frequently mutated in tumors. Many tumor-associated mutant p53 (mutp53) proteins not only lose tumor suppressive function, but also gain new oncogenic functions that are independent of wild type p53, defined as mutp53 gain-of-function (GOF). Here we show that tumor-associated mutp53 stimulates the Warburg effect in cultured cells and mutp53 knock-in mice as a new mutp53 GOF. Mutp53 stimulates the Warburg effect through promoting GLUT1 translocation to plasma membrane, which is mediated by the activated RhoA and its downstream effector ROCK. Inhibition of the RhoA/ROCK/GLUT1 signaling largely abolishes mutp53 GOF in stimulating the Warburg effect. Furthermore, inhibition of glycolysis in tumor cells greatly compromises mutp53 GOF in promoting tumorigenesis. Thus, our results reveal a new mutp53 GOF and a mechanism for controlling the Warburg effect.


Hepatology | 2013

Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma†‡§

Yingjian Liang; Tongsen Zheng; Ruipeng Song; Jiabei Wang; Dalong Yin; Luoluo Wang; Haitao Liu; Lantian Tian; Xiang Fang; Xianzhi Meng; Hongchi Jiang; Jiaren Liu; Lianxin Liu

The increasing incidence of hepatocellular carcinoma (HCC) is of great concern not only in the United States but throughout the world. Although sorafenib, a multikinase inhibitor with antiangiogenic and antiproliferative effects, currently sets the new standard for advanced HCC, tumor response rates are usually quite low. An understanding of the underlying mechanisms for sorafenib resistance is critical if outcomes are to be improved. In this study we tested the hypothesis that hypoxia caused by the antiangiogenic effects of sustained sorafenib therapy could induce sorafenib resistance as a cytoprotective adaptive response, thereby limiting sorafenib efficiency. We found that HCCs, clinically resistant to sorafenib, exhibit increased intratumor hypoxia compared with HCCs before treatment or HCCs sensitive to sorafenib. Hypoxia protected HCC cells against sorafenib and hypoxia‐inducible factor 1 (HIF‐1α) was required for the process. HCC cells acquired increased P‐gp expression, enhanced glycolytic metabolism, and increased nuclear factor kappa B (NF‐κB) activity under hypoxia. EF24, a molecule having structural similarity to curcumin, could synergistically enhance the antitumor effects of sorafenib and overcome sorafenib resistance through inhibiting HIF‐1α by sequestering it in cytoplasm and promoting degradation by way of up‐regulating Von Hippel‐Lindau tumor suppressor (VHL). Furthermore, we found that sustained sorafenib therapy led to increased intratumor hypoxia, which was associated with sorafenib sensitivity in HCC subcutaneous mice tumor models. The combination of EF24 and sorafenib showed synergistically effects against metastasis both in vivo and in vitro. Synergistic tumor growth inhibition effects were also observed in subcutaneous and orthotopic hepatic tumors. Conclusion: Hypoxia induced by sustained sorafenib treatment confers sorafenib resistance to HCC through HIF‐1α and NF‐κB activation. EF24 overcomes sorafenib resistance through VHL‐dependent HIF‐1α degradation and NF‐κB inactivation. EF24 in combination with sorafenib represents a promising strategy for HCC. (HEPATOLOGY 2013)


Proceedings of the National Academy of Sciences of the United States of America | 2012

Chronic restraint stress attenuates p53 function and promotes tumorigenesis.

Zhaohui Feng; Lianxin Liu; Cen Zhang; Tongsen Zheng; Jiabei Wang; Meihua Lin; Yuhan Zhao; Xiaowen Wang; Arnold J. Levine; Wenwei Hu

Epidemiological studies strongly suggest that chronic psychological stress promotes tumorigenesis. However, its direct link in vivo and the underlying mechanisms that cause this remain unclear. This study provides direct evidence that chronic stress promotes tumorigenesis in vivo; chronic restraint, a well-established mouse model to induce chronic stress, greatly promotes ionizing radiation (IR)-induced tumorigenesis in p53+/− mice. The tumor suppressor protein p53 plays a central role in tumor prevention. Loss or attenuation of p53 function contriubutes greatly to tumorigenesis. We found that chronic restraint decreases the levels and function of p53 in mice, and furthermore, promotes the growth of human xenograft tumors in a largely p53-dependent manner. Our results show that glucocorticoids elevated during chronic restraint mediate the effect of chronic restraint on p53 through the induction of serum- and glucocorticoid-induced protein kinase (SGK1), which in turn increases MDM2 activity and decreases p53 function. Taken together, this study demonstrates that chronic stress promotes tumorigenesis in mice, and the attenuation of p53 function is an important part of the underlying mechanism, which can be mediated by glucocortcoids elevated during chronic restraint.


Cancer Letters | 2011

Genistein potentiates the effect of arsenic trioxide against human hepatocellular carcinoma: Role of Akt and nuclear factor-κB

Yong Ma; Jizhou Wang; Lianxin Liu; Huaqiang Zhu; Xiaoning Chen; Shangha Pan; Xueying Sun; Hongchi Jiang

Hepatocellular carcinoma (HCC) is a highly lethal malignancy mostly because of de novo and acquired resistance to conventional chemotherapy. Constitutive activation of Akt and nuclear factor-κB (NF-κB) represent major cellular abnormalities associated with both the pathogenesis and therapeutic resistance of HCC. The aim of the present study was to determine whether genistein, a natural Akt/NF-κB inhibitor, could enhance the anti-HCC efficacy of ATO both in vitro and in vivo. Our results demonstrated that genistein not only potentiated the proliferation-inhibiting and apoptosis-inducing effect of ATO on human HCC cell lines in vitro, but also dramatically augmented its suppressive effect on both tumor growth and angiogenesis in nude mice. The mechanism is at least partially due to the suppressive effect of genistein both on the proper and ATO-induced Akt activation, and on the activity of NF-κB, and the latter correlated with the suppression of NF-κB regulated gene products, including cyclin D1, Bcl-xL, Bcl-2, c-myc, COX-2, and VEGF. These data suggest that the combination of ATO with genistein presents a promising therapeutic approach for the treatment of HCC.


Nature Communications | 2013

Spliced MDM2 isoforms promote mutant p53 accumulation and gain-of-function in tumorigenesis

Tongsen Zheng; Jiabei Wang; Yuhan Zhao; Cen Zhang; Meihua Lin; Xiaowen Wang; Haiyang Yu; Lianxin Liu; Zhaohui Feng; Wenwei Hu

Tumor suppressor p53 is frequently mutated in tumors. Mutant p53 (Mutp53) proteins often gain new activities in promoting tumorigenesis, defined as gain-of-function (GOF). Mutp53 often accumulates at high levels in tumors, which promotes mutp53 GOF in tumorigenesis. The mechanism of mutp53 accumulation is poorly understood. Here we find that MDM2 isoforms promote mutp53 accumulation in tumors. MDM2 isoform B (MDM2-B), the MDM2 isoform most frequently over-expressed in human tumors, interacts with full-length MDM2 to inhibit MDM2-mediated mutp53 degradation, promoting mutp53 accumulation and GOF in tumorigenesis. Furthermore, MDM2-B over-expression correlates with mutp53 accumulation in human tumors. In mutp53 knock-in mice, a MDM2 isoform similar to human MDM2-B is over-expressed in the majority of tumors, which promotes mutp53 accumulation and tumorigenesis. Thus, over-expression of MDM2 isoforms promotes mutp53 accumulation in tumors, contributing to mutp53 GOF in tumorigenesis. Furthermore, promoting mutp53 accumulation and GOF is an important mechanism by which MDM2 isoforms promote tumorigenesis.


Journal of Cellular Biochemistry | 2010

PTEN- and p53-Mediated Apoptosis and Cell Cycle Arrest by FTY720 in Gastric Cancer Cells and Nude Mice

Tongsen Zheng; Xianzhi Meng; Jiabei Wang; Xi Chen; Dalong Yin; Yingjian Liang; Xuan Song; Shangha Pan; Hongchi Jiang; Lianxin Liu

FTY720, a new immunosuppressant, derived from ISP‐1, has been studied for its putative anti‐cancer properties in the recent years. In this study, we have reported that FTY720 greatly inhibited gastric cancer cell proliferation for the first time, and found this effect was associated with G1 phase cell cycle arrest and apoptosis. Results from our Western blotting and Real‐time PCR showed that FTY720 induced obvious PTEN expression in a p53‐independent way, consistent with a substantial decrease in p‐Akt and MDM2. FTY720 dramatically increased the expression of Cip1/p21, p27, and BH3‐only proteins through the accumulation of p53 by PTEN‐mediated inhibition of the PI3K/Akt/MDM2 signaling. Suppression of PTEN expression with siRNA significantly reduced the p53 and p21 levels and activated Akt, resulting in decreased apoptosis and increased cell survival. Furthermore, we have observed an additive effect of FTY720 in killing gastric cancer cells when in combination with Cisplatin, partly through PTEN‐mediated Akt/MDM2 inhibition. In vivo study has also shown that tumor growth was significantly suppressed after FTY720 treatment. In conclusion, our results suggest that FTY720 induces a significant increase of PTEN, which inhibits p‐Akt and MDM2, and then increases the level of p53, thereby inducing G1 phase arrest and apoptosis. We have characterized a novel immunosuppressant, for the first time, which shows potential anti‐tumor effects on gastric cancer by PTEN activation through p53‐independent mechanism, especially in combination with Cisplatin. This PTEN target‐based therapy is worth further investigation and warrants clinical evaluation. J. Cell. Biochem. 111: 218–228, 2010.


Hepatology | 2014

Gankyrin promotes tumor growth and metastasis through activation of IL‐6/STAT3 signaling in human cholangiocarcinoma

Tongsen Zheng; Xuehui Hong; Jiabei Wang; Tiemin Pei; Yingjian Liang; Dalong Yin; Ruipeng Song; Xuan Song; Zhaoyang Lu; Shuyi Qi; Jiaren Liu; Boshi Sun; Changming Xie; Shangha Pan; Yuejin Li; Xiaohe Luo; Shuai Li; Xiang Fang; Nishant Bhatta; Hongchi Jiang; Lianxin Liu

Although gankyrin is involved in the tumorigenicity and metastasis of some malignancies, the role of gankyrin in cholangiocarcinoma (CCA) is unclear. In this study we investigated the expression of gankyrin in human CCA tissues and cell lines. The effects of gankyrin on CCA tumor growth and metastasis were determined both in vivo and in vitro. The results showed that gankyrin was overexpressed in CCA tissues and cell lines. Gankyrin expression was associated with CCA histological differentiation, TNM stage, and metastasis. The multivariate Cox analysis revealed that gankyrin was an independent prognostic indicator for overall survival. Gankyrin overexpression promoted CCA cell proliferation, migration, and invasion, while gankyrin knockdown inhibited CCA tumor growth, metastasis, and induced Rb‐dependent senescence and G1 phase cell cycle arrest. Gankyrin increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and promoted the nuclear translocation of p‐STAT3. Suppression of STAT3 signaling by small interfering RNA (siRNA) or STAT3 inhibitor interfered with gankyrin‐mediated carcinogenesis and metastasis, while interleukin (IL)‐6, a known upstream activator of STAT3, could restore the proliferation and migration of gankyrin‐silenced CCA cells. The IL‐6 level was decreased by gankyrin knockdown, while increased by gankyrin overexpression. Gankyrin regulated IL‐6 expression by way of facilitating the phosphorylation of Rb; meanwhile, rIL‐6 treatment increased the expression of gankyrin, suggesting that IL‐6 was regulated by a positive feedback loop involving gankyrin in CCA. In the xenograft experiments, gankyrin overexpression accelerated tumor formation and increased tumor weight, whereas gankyrin knockdown showed the opposite effects. The in vivo spontaneous metastasis assay revealed that gankyrin promoted CCA metastasis through IL‐6/STAT3 signaling pathway. Conclusion: Gankyrin is crucial for CCA carcinogenesis and metastasis by activating IL‐6/STAT3 signaling pathway through down‐regulating Rb protein. (Hepatology 2014;59:935–946)


Autophagy | 2012

The role of AKT1 and autophagy in the protective effect of hydrogen sulphide against hepatic ischemia/reperfusion injury in mice

Dawei Wang; Yong Ma; Zhengtian Li; Kai Kang; Xueying Sun; Shangha Pan; Jizhou Wang; Huayang Pan; Lianxin Liu; Desen Liang; Hongchi Jiang

Hydrogen sulphide (H2S) exerts a protective effect in hepatic ischemia-reperfusion (I/R) injury. However, the exact mechanism of H2S action remains largely unknown. This study was designed to investigate the role of the PtdIns3K-AKT1 pathways and autophagy in the protective effect of H2S against hepatic I/R injury. Primary cultured mouse hepatocytes and livers with or without NaHS (a donor of H2S) preconditioning were exposed to anoxia/reoxygenation (A/R) and I/R, respectively. In certain groups, they were also pretreated with LY294002 (AKT1-specific inhibitor), 3-methyladenine (3MA, autophagy inhibitor) or rapamycin (autophagy enhancer), alone or simultaneously. Cell viability, expression of P-AKT1, T-AKT1, LC3 and BECN1 were examined. The severity of liver injury was measured by the levels of serum aminotransferase and inflammatory cytokine, apoptosis and histological examination. GFP-LC3 redistribution and transmission electron microscopy were used to test the activity of autophagy. H2S preconditioning activated PtdIns3K-AKT1 signaling in hepatocytes. LY294002 could abolish the AKT1 activation and attenuate the protective effect of H2S on hepatocytes A/R and hepatic I/R injuries. H2S suppressed hepatic autophagy in vitro and in vivo. Further reducing autophagy by 3MA also diminished the protective effect of H2S, while rapamycin could reverse the autophagy inhibitory effect and enhance the protective effect of H2S against hepatocytes A/R and hepatic I/R injuries, consequently. Taken together, H2S protects against hepatocytic A/R and hepatic I/R injuries, at least in part, through AKT1 activation but not autophagy. An autophagy agonist could be applied to potentiate this hepatoprotective effect by reversing the autophagy inhibition of H2S.


Hepatology | 2014

Reciprocal activation between ATPase inhibitory factor 1 and NF‐κB drives hepatocellular carcinoma angiogenesis and metastasis

Ruipeng Song; Huiwen Song; Yingjian Liang; Dalong Yin; Heng Zhang; Tongsen Zheng; Jiabei Wang; Zhaoyang Lu; Xuan Song; Tiemin Pei; Youyou Qin; Yuejin Li; Changming Xie; Boshi Sun; Huawen Shi; Shuai Li; Xianzhi Meng; Guangchao Yang; Shangha Pan; Jiyuan Zhu; Shuyi Qi; Hongchi Jiang; Zhiyong Zhang; Lianxin Liu

Hepatocellular carcinoma (HCC) is a highly vascularized tumor with frequent extrahepatic metastasis. Active angiogenesis and metastasis are responsible for rapid recurrence and poor survival of HCC. However, the mechanisms that contribute to tumor metastasis remain unclear. Here we evaluate the effects of ATPase inhibitory factor 1 (IF1), an inhibitor of the mitochondrial H(+)‐adenosine triphosphate (ATP) synthase, on HCC angiogenesis and metastasis. We found that increased expression of IF1 in human HCC predicts poor survival and disease recurrence after surgery. Patients with HCC who have large tumors, with vascular invasion and metastasis, expressed high levels of IF1. Invasive tumors overexpressing IF1 were featured by active epithelial‐mesenchymal transition (EMT) and increased angiogenesis, whereas silencing IF1 expression attenuated EMT and invasion of HCC cells. Mechanistically, IF1 promoted Snai1 and vascular endothelial growth factor (VEGF) expression by way of activating nuclear factor kappa B (NF‐κB) signaling, which depended on the binding of tumor necrosis factor (TNF) receptor‐associated factor 1 (TRAF1) to NF‐κB‐inducing kinase (NIK) and the disruption of NIK association with the TRAF2‐cIAP2 complex. Suppression of the NF‐κB pathway interfered with IF1‐mediated EMT and invasion. Chromatin immunoprecipitation assay showed that NF‐κB can bind to the Snai1 promoter and trigger its transcription. IF1 was directly transcribed by NF‐κB, thus forming a positive feedback signaling loop. There was a significant correlation between IF1 expression and pp65 levels in a cohort of HCC biopsies, and the combination of these two parameters was a more powerful predictor of poor prognosis. Conclusion: IF1 promotes HCC angiogenesis and metastasis by up‐regulation of Snai1 and VEGF transcription, thereby providing new insight into HCC progression and IF1 function. (Hepatology 2014;60:1659–1673)

Collaboration


Dive into the Lianxin Liu's collaboration.

Top Co-Authors

Avatar

Hongchi Jiang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiabei Wang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Shangha Pan

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Tongsen Zheng

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yingjian Liang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dalong Yin

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Xuan Song

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhaoyang Lu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Xianzhi Meng

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge