Ruipeng Song
Harbin Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruipeng Song.
Hepatology | 2013
Yingjian Liang; Tongsen Zheng; Ruipeng Song; Jiabei Wang; Dalong Yin; Luoluo Wang; Haitao Liu; Lantian Tian; Xiang Fang; Xianzhi Meng; Hongchi Jiang; Jiaren Liu; Lianxin Liu
The increasing incidence of hepatocellular carcinoma (HCC) is of great concern not only in the United States but throughout the world. Although sorafenib, a multikinase inhibitor with antiangiogenic and antiproliferative effects, currently sets the new standard for advanced HCC, tumor response rates are usually quite low. An understanding of the underlying mechanisms for sorafenib resistance is critical if outcomes are to be improved. In this study we tested the hypothesis that hypoxia caused by the antiangiogenic effects of sustained sorafenib therapy could induce sorafenib resistance as a cytoprotective adaptive response, thereby limiting sorafenib efficiency. We found that HCCs, clinically resistant to sorafenib, exhibit increased intratumor hypoxia compared with HCCs before treatment or HCCs sensitive to sorafenib. Hypoxia protected HCC cells against sorafenib and hypoxia‐inducible factor 1 (HIF‐1α) was required for the process. HCC cells acquired increased P‐gp expression, enhanced glycolytic metabolism, and increased nuclear factor kappa B (NF‐κB) activity under hypoxia. EF24, a molecule having structural similarity to curcumin, could synergistically enhance the antitumor effects of sorafenib and overcome sorafenib resistance through inhibiting HIF‐1α by sequestering it in cytoplasm and promoting degradation by way of up‐regulating Von Hippel‐Lindau tumor suppressor (VHL). Furthermore, we found that sustained sorafenib therapy led to increased intratumor hypoxia, which was associated with sorafenib sensitivity in HCC subcutaneous mice tumor models. The combination of EF24 and sorafenib showed synergistically effects against metastasis both in vivo and in vitro. Synergistic tumor growth inhibition effects were also observed in subcutaneous and orthotopic hepatic tumors. Conclusion: Hypoxia induced by sustained sorafenib treatment confers sorafenib resistance to HCC through HIF‐1α and NF‐κB activation. EF24 overcomes sorafenib resistance through VHL‐dependent HIF‐1α degradation and NF‐κB inactivation. EF24 in combination with sorafenib represents a promising strategy for HCC. (HEPATOLOGY 2013)
Hepatology | 2014
Tongsen Zheng; Xuehui Hong; Jiabei Wang; Tiemin Pei; Yingjian Liang; Dalong Yin; Ruipeng Song; Xuan Song; Zhaoyang Lu; Shuyi Qi; Jiaren Liu; Boshi Sun; Changming Xie; Shangha Pan; Yuejin Li; Xiaohe Luo; Shuai Li; Xiang Fang; Nishant Bhatta; Hongchi Jiang; Lianxin Liu
Although gankyrin is involved in the tumorigenicity and metastasis of some malignancies, the role of gankyrin in cholangiocarcinoma (CCA) is unclear. In this study we investigated the expression of gankyrin in human CCA tissues and cell lines. The effects of gankyrin on CCA tumor growth and metastasis were determined both in vivo and in vitro. The results showed that gankyrin was overexpressed in CCA tissues and cell lines. Gankyrin expression was associated with CCA histological differentiation, TNM stage, and metastasis. The multivariate Cox analysis revealed that gankyrin was an independent prognostic indicator for overall survival. Gankyrin overexpression promoted CCA cell proliferation, migration, and invasion, while gankyrin knockdown inhibited CCA tumor growth, metastasis, and induced Rb‐dependent senescence and G1 phase cell cycle arrest. Gankyrin increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and promoted the nuclear translocation of p‐STAT3. Suppression of STAT3 signaling by small interfering RNA (siRNA) or STAT3 inhibitor interfered with gankyrin‐mediated carcinogenesis and metastasis, while interleukin (IL)‐6, a known upstream activator of STAT3, could restore the proliferation and migration of gankyrin‐silenced CCA cells. The IL‐6 level was decreased by gankyrin knockdown, while increased by gankyrin overexpression. Gankyrin regulated IL‐6 expression by way of facilitating the phosphorylation of Rb; meanwhile, rIL‐6 treatment increased the expression of gankyrin, suggesting that IL‐6 was regulated by a positive feedback loop involving gankyrin in CCA. In the xenograft experiments, gankyrin overexpression accelerated tumor formation and increased tumor weight, whereas gankyrin knockdown showed the opposite effects. The in vivo spontaneous metastasis assay revealed that gankyrin promoted CCA metastasis through IL‐6/STAT3 signaling pathway. Conclusion: Gankyrin is crucial for CCA carcinogenesis and metastasis by activating IL‐6/STAT3 signaling pathway through down‐regulating Rb protein. (Hepatology 2014;59:935–946)
Hepatology | 2014
Ruipeng Song; Huiwen Song; Yingjian Liang; Dalong Yin; Heng Zhang; Tongsen Zheng; Jiabei Wang; Zhaoyang Lu; Xuan Song; Tiemin Pei; Youyou Qin; Yuejin Li; Changming Xie; Boshi Sun; Huawen Shi; Shuai Li; Xianzhi Meng; Guangchao Yang; Shangha Pan; Jiyuan Zhu; Shuyi Qi; Hongchi Jiang; Zhiyong Zhang; Lianxin Liu
Hepatocellular carcinoma (HCC) is a highly vascularized tumor with frequent extrahepatic metastasis. Active angiogenesis and metastasis are responsible for rapid recurrence and poor survival of HCC. However, the mechanisms that contribute to tumor metastasis remain unclear. Here we evaluate the effects of ATPase inhibitory factor 1 (IF1), an inhibitor of the mitochondrial H(+)‐adenosine triphosphate (ATP) synthase, on HCC angiogenesis and metastasis. We found that increased expression of IF1 in human HCC predicts poor survival and disease recurrence after surgery. Patients with HCC who have large tumors, with vascular invasion and metastasis, expressed high levels of IF1. Invasive tumors overexpressing IF1 were featured by active epithelial‐mesenchymal transition (EMT) and increased angiogenesis, whereas silencing IF1 expression attenuated EMT and invasion of HCC cells. Mechanistically, IF1 promoted Snai1 and vascular endothelial growth factor (VEGF) expression by way of activating nuclear factor kappa B (NF‐κB) signaling, which depended on the binding of tumor necrosis factor (TNF) receptor‐associated factor 1 (TRAF1) to NF‐κB‐inducing kinase (NIK) and the disruption of NIK association with the TRAF2‐cIAP2 complex. Suppression of the NF‐κB pathway interfered with IF1‐mediated EMT and invasion. Chromatin immunoprecipitation assay showed that NF‐κB can bind to the Snai1 promoter and trigger its transcription. IF1 was directly transcribed by NF‐κB, thus forming a positive feedback signaling loop. There was a significant correlation between IF1 expression and pp65 levels in a cohort of HCC biopsies, and the combination of these two parameters was a more powerful predictor of poor prognosis. Conclusion: IF1 promotes HCC angiogenesis and metastasis by up‐regulation of Snai1 and VEGF transcription, thereby providing new insight into HCC progression and IF1 function. (Hepatology 2014;60:1659–1673)
Gut | 2014
Xuehui Hong; Ruipeng Song; Huiwen Song; Tongsen Zheng; Jiabei Wang; Yingjian Liang; Shuyi Qi; Zhaoyang Lu; Xuan Song; Hongchi Jiang; Lianxin Liu; Zhiyong Zhang
Background Mounting epidemiological evidence supports a role for phosphatase and tensin homologue (PTEN)-T cell leukaemia 1 (Tcl1) signalling deregulation in hepatocarcinogenesis. Objective To determine the molecular and biochemical mechanisms by which the PTEN/Tcl1 axis regulates the pentose phosphate pathway (PPP) in hepatocellular carcinoma (HCC). Methods We compared levels of PTEN and glucose-6-phosphate dehydrogenase (G6PD) mRNA in human HCC and healthy liver tissue. We measured PPP flux, glucose consumption, lactate production, nicotinamide adenine dinucleotide phosphate (NADPH) levels and lipid accumulation. We investigated the PTEN/Tcl1 axis using molecular biology, biochemistry and mass spectrometry analysis. We assessed proliferation, apoptosis and senescence in cultured cells, and tumour formation in mice. Results We showed that PTEN inhibited the PPP pathway in human liver tumours. Through the PPP, PTEN suppressed glucose consumption and biosynthesis. Mechanistically, the PTEN protein bound to G6PD, the first and rate-limiting enzyme of the PPP and prevented the formation of the active G6PD dimer. Tcl1, a coactivator for Akt, reversed the effects of PTEN on biosynthesis. Tcl1 promoted G6PD activity and also increased G6PD pre-mRNA splicing and protein expression in a heterogeneous nuclear ribonucleoprotein (hnRNPK)-dependent manner. PTEN also formed a complex with hnRNPK, which inhibited G6PD pre-mRNA splicing. Moreover, PTEN inactivated Tcl1 via glycogen synthase kinase-3β (GSK3β)-mediated phosphorylation. Importantly, Tcl1 knockdown enhanced the sensitivity of HCC to sorafenib, whereas G6PD knockdown inhibited hepatocarcinogenesis. Conclusions These results establish the counteraction between PTEN and Tcl1 as a key mechanism that regulates the PPP and suggest that targeting the PTEN/Tcl1/hnRNPK/G6PD axis could open up possibilities for therapeutic intervention and improve the prognosis of patients with HCC.
BMC Cancer | 2014
Zhaoyang Lu; Jiabei Wang; Tongsen Zheng; Yingjian Liang; Dalong Yin; Ruipeng Song; Tiemin Pei; Shangha Pan; Hongchi Jiang; Lianxin Liu
BackgroundInterleukin 6 (IL-6)-mediated signal transducers and activators of transcription 3 (STAT-3) phosphorylation (activation) is aberrantly sustained in cholangiocarcinoma cells resulting in enhanced myeloid cell leukemia 1 (Mcl-1) expression and resistance to apoptosis. FTY720, a new immunosuppressant, derived from ISP-1, has been studied for its putative anti-cancer properties. This study aimed to elucidate the mechanism by which FTY720 mediates antitumor effects in cholangiocarcinoma (CC) cells.MethodsThree CC cell lines were examined, QBC939, TFK-1, and HuCCT1. The therapeutic effects of FTY720 were evaluated in vitro and in vivo. Cell proliferation, apoptosis, cell cycle, invasive potential, and epithelial- mesenchy-mal transition (EMT) were examined.ResultsFTY720 greatly inhibited CC cells proliferation and EMT in vitro and in vivo, and this effect was associated with dephosphorylation of STAT3tyr705. FTY720 induced apoptosis and G1 phase arrest in CC cells, and inhibited invasion of CC cells. Western blot analysis showed that FTY720 induced cleavage of caspases 3, 8 and 9, and of PARP, in a dose-dependent manner, consistent with a substantial decrease in p-STAT3, Bcl-xL, Bcl-2, survivin, cyclin D1, cyclin E, N-cadherin, vimentin, VEGF and TWIST1. In vivo studies showed that tumor growth and metastasis were significantly suppressed after FTY720 treatment.ConclusionsThese results suggest that FTY720 induces a significant decrease in p-STAT3, which inhibits proliferation and EMT of CC cells, and then induces G1 phase arrest and apoptosis. We have characterized a novel immunosuppressant, which shows potential anti-tumor effects on CC via p-STAT3 inhibition. FTY720 merits further investigation and warrants clinical evaluation.
PLOS ONE | 2012
Haitao Liu; Yingjian Liang; Luoluo Wang; Lantian Tian; Ruipeng Song; Tianwen Han; Shangha Pan; Lianxin Liu
The synthetic compound 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) is a potent analog of curcumin that exhibits enhanced biological activity and bioavailability without increasing toxicity. EF24 exerts antitumor activity by arresting the cell cycle and inducing apoptosis, suppressing many types of cancer cells in vitro. The antiproliferative and antiangiogenic properties of EF24 provide theoretical support for its development and application to liver cancers. We investigated the in vitro and in vivo activities of EF24 on liver cancer to better understand its therapeutic effects and mechanisms. EF24 induced significant apoptosis and G2/M-phase cell cycle arrest in mouse liver cancer cell lines, Hepa1-6 and H22. The expression levels of G2/M cell cycle regulating factors, cyclin B1 and Cdc2, were significantly decreased, pp53, p53, and p21 were significantly increased in EF24-treated cells. In addition, EF24 treatment significantly reduced Bcl-2 concomitant with an increase in Bax, enhanced the release of cytochrome c from the mitochondria into the cytosol, resulting in an upregulation of cleaved-caspase-3, which promoted poly (ADP-ribose) polymerase cleavage. EF24-treated cells also displayed decreases in phosphorylated Akt, phosphorylated extracellular signal-regulated kinase and vascular endothelial growth factor. Our in vitro protein expression data were confirmed in vivo using a subcutaneous hepatocellular carcinoma (HCC) tumor model. This mouse HCC model confirmed that total body weight was unchanged following EF24 treatment, although tumor weight was significantly decreased. Using an orthotopic HCC model, EF24 significantly reduced the liver/body weight ratio and relative tumor areas compared to the control group. In situ detection of apoptotic cells and quantification of Ki-67, a biomarker of cell proliferation, all indicated significant tumor suppression with EF24 treatment. These results suggest that EF24 exhibits anti-tumor activity on liver cancer cells via mitochondria-dependent apoptosis and inducing cell cycle arrest coupled with antiangiogenesis. The demonstrated activities of EF24 support its further evaluation as a treatment for human liver cancers.
Cancer Letters | 2016
Guangchao Yang; Yingjian Liang; Tongsen Zheng; Ruipeng Song; Jiabei Wang; Huawen Shi; Boshi Sun; Changming Xie; Yuejin Li; Jihua Han; Shangha Pan; Yaliang Lan; Xirui Liu; Mingxi Zhu; Yan Wang; Lianxin Liu
Hepatocellular carcinoma (HCC) is currently still a major cause of cancer-related deaths. Identifying early metastatic biomarkers and therapeutic targets for HCC is of great importance. Emerging evidence suggest that epithelial-mesenchymal transitions (EMTs) play important roles in tumor metastasis and recurrence. Understanding molecular mechanisms that regulate the EMT process is crucial for improving HCC. In this study, we find Ficolin-2 (FCN2) plays an essential role in metastasis and EMT of HCC. FCN2 expression is downregulated in HCC cells and tissues. Low level of FCN2 in HCCs is correlated with aggressive metastatic features, and would be a prognostic factor for overall disease-free survival of HCC patients. Ectopic expression of FCN2 markedly inhibits HCC cells migration, invasion as well as EMT in vitro and in vivo. Moreover, TGF-β is found contribute to the function of FCN2 in suppressing metastasis and EMT of HCC. Collectively, our data suggest that FCN2 may have prognostic value in HCC metastasis. Additionally, the FCN2/ TGF-β/EMT axis identified in this study provides novel insight into the mechanisms of HCC metastasis, which may facilitate the development of new therapeutics against HCC.
Oncology Reports | 2014
Shuai Li; Zhiyang Han; Yong Ma; Ruipeng Song; Tiemin Pei; Tongsen Zheng; Jiabei Wang; Dongsheng Xu; Xiang Fang; Hongchi Jiang; Lianxin Liu
Cholangiocarcinoma (CCA) is a type of digestive tumor that is associated with a high rate of mortality due to the difficulty of early diagnosis and the resistance of this tumor type to chemotherapy. Hydroxytyrosol (HT), which is derived from virgin olive oil (VOO), has recently been reported to inhibit the proliferation of various types of human cancer cells. In the present study, we investigated the effect of HT on CCA. The antiproliferative and proapoptotic effects of HT on CCA were evaluated in the human CCA cell lines TFK-1 and KMBC and the human gallbladder cancer cell line GBS-SD. We also assessed this effect in vivo. We found that 75 µM HT inhibited the proliferation of the TFK-1, KMBC and GBS-SD cell lines. However, 200 µM HT treatment did not affect the proliferation of the human bile duct cell line HIBEpiC. More importantly, HT (250 and 500 mg/kg/day) markedly inhibited the growth of CCA xenografts in mice. G2/M phase cell cycle arrest and apoptosis were observed using flow cytometry and western blotting, and we also noted a time- and dose-dependent inhibition of phospho-ERK, with no changes in total-ERK, during treatment with HT. The present study showed that HT induces cell cycle arrest and apoptosis in vitro and in vivo. These data suggest that HT, which possesses excellent biocompatibility and few side-effects, could be developed as a novel agent against CCA.
Scientific Reports | 2016
Dalong Yin; Yingjian Liang; Tongsen Zheng; Ruipeng Song; Jiabei Wang; Boshi Sun; Shangha Pan; Lian-Dong Qu; Jia-ren Liu; Hongchi Jiang; Lianxin Liu
A synthetic monoketone analog of curcumin, termed 3, 5-bis (2-flurobenzylidene) piperidin-4-one (EF24), has been reported to inhibit the growth of a variety of cancer cells both in vitro and in vivo. However, whether EF24 has anticancer effects on cholangiocarcinoma (CCA) cells and the mechanisms remain to be investigated. The aim of our study was to evaluate the molecular mechanisms underlying the anticancer effects of EF24 on CCA tumor growth and metastasis. Cell proliferation, apoptosis, migration, invasion, tumorigenesis and metastasis were examined. EF24 exhibited time- and dose-dependent inhibitory effects on HuCCT-1, TFK-1 and HuH28 human CCA cell lines. EF24 inhibited CCA cell proliferation, migration, and induced G2/M phase arrest. EF24 induced cell apoptosis along with negative regulation of NF-κB- X-linked inhibitor of apoptosis protein (XIAP) signaling pathway. XIAP inhibition by lentivirus mediated RNA interference enhanced EF24-induced apoptosis, while XIAP overexpression reduced it in CCA cells. In vivo, EF24 significantly suppressed the growth of CCA tumor xenografts and tumor metastasis while displaying low toxicity levels. Our findings indicate that EF24 is a potent antitumor agent that inhibits tumor growth and metastasis by inhibiting NF-κB dependent signaling pathways. EF24 may represent a novel approach for CCA treatment.
Experimental Biology and Medicine | 2012
Hai-Yan Yang; Hao-Ling Liu; Lantian Tian; Ruipeng Song; Xuan Song; Dalong Yin; Yingjian Liang; Lian-Dong Qu; Hongchi Jiang; Jiaren Liu; Lianxin Liu
The tumor-suppressor ING3 has been shown to be involved in tumor transcriptional regulation, apoptosis and the cell cycle. Some studies have demonstrated that ING3 is dysregulated in several types of cancers. However, the expression and function of ING3 in human hepatocellular carcinoma (HCC) remains unclear. The aim of this study is to investigate ING3 expression in hepatic tumors and its clinical relevance in hepatic cancer. The expression of ING3 protein was examined in 120 dissected HCC tissues and 47 liver tissues adjacent to the tumor by immunohistochemical assays and confirmed by Western blot analysis in 20 paired frozen tumor and non-tumor liver tissues. The relationship between ING3 staining and clinico-pathological characteristics of HCC was further analyzed. The mRNA expression of ING3 in the dissected tissues was also analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and realtime PCR. Both mRNA and protein concentrations of ING3 were found to be downregulated in the majority of HCC tumors in comparison with matched non-tumor hepatic tissues. Analysis of the relationship between ING3 staining and clinico-pathological characteristics of HCC showed that the low expression of ING3 protein is correlated with more aggressive behavior of the tumor. Kaplan–Meier curves demonstrated that patients with a low expression of ING3 have a significantly increased risk of shortened survival time. In addition, multivariate analysis suggested that the level of ING3 expression may be an independent prognostic factor. Our findings indicate that ING3 may be an important marker for human hepatocellular carcinoma progression and prognosis, as well as a potential therapeutic target.