Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lianyi Zhang is active.

Publication


Featured researches published by Lianyi Zhang.


Journal of Biological Chemistry | 2014

Receptor-interacting Protein Kinase 4 and Interferon Regulatory Factor 6 Function as a Signaling Axis to Regulate Keratinocyte Differentiation

Mei Qi Kwa; Jennifer Huynh; Jiamin Aw; Lianyi Zhang; Thao Nguyen; Eric C. Reynolds; Matthew J. Sweet; John A. Hamilton; Glen M. Scholz

Background: RIPK4 and IRF6 are important for epidermal development. However, whether they function together to regulate keratinocyte differentiation has not been addressed. Results: RIPK4 directly activates IRF6, resulting in expression of the transcriptional regulators GRHL3 and OVOL1. Conclusion: RIPK4 and IRF6 promote keratinocyte differentiation by functioning as a signaling axis. Significance: This study reveals how mutations in RIPK4 may cause epidermal disorders. Receptor-interacting protein kinase 4 (RIPK4) and interferon regulatory factor 6 (IRF6) are critical regulators of keratinocyte differentiation, and their mutation causes the related developmental epidermal disorders Bartsocas-Papas syndrome and popliteal pterygium syndrome, respectively. However, the signaling pathways in which RIPK4 and IRF6 operate to regulate keratinocyte differentiation are poorly defined. Here we identify and mechanistically define a direct functional relationship between RIPK4 and IRF6. Gene promoter reporter and in vitro kinase assays, coimmunoprecipitation experiments, and confocal microscopy demonstrated that RIPK4 directly regulates IRF6 trans-activator activity and nuclear translocation. Gene knockdown and overexpression studies indicated that the RIPK4-IRF6 signaling axis controls the expression of key transcriptional regulators of keratinocyte differentiation, including Grainyhead-like 3 and OVO-like 1. Additionally, we demonstrate that the p.Ile121Asn missense mutation in RIPK4, which has been identified recently in Bartsocas-Papas syndrome, inhibits its kinase activity, thereby preventing RIPK4-mediated IRF6 activation and nuclear translocation. We show, through mutagenesis-based experiments, that Ser-413 and Ser-424 in IRF6 are important for its activation by RIPK4. RIPK4 is also important for the regulation of IRF6 expression by the protein kinase C pathway. Therefore, our findings not only provide important mechanistic insights into the regulation of keratinocyte differentiation by RIPK4 and IRF6, but they also suggest one mechanism by which mutations in RIPK4 may cause epidermal disorders (e.g. Bartsocas-Papas syndrome), namely by the impaired activation of IRF6 by RIPK4.


PLOS ONE | 2014

The Porphyromonas gingivalis Ferric Uptake Regulator Orthologue Binds Hemin and Regulates Hemin-Responsive Biofilm Development

Catherine A. Butler; Stuart G. Dashper; Lianyi Zhang; Christine A. Seers; Helen L. Mitchell; Deanne V. Catmull; Michelle D. Glew; Jacqueline E. Heath; Yan Tan; Hasnah S.G. Khan; Eric C. Reynolds

Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur) superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator). Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM). The binding of hemin resulted in conformational changes of Zn(II)Har and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455) relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(II)Har bound the promoter region of dnaA (PGN_0001), one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.


PLOS ONE | 2013

Propeptide-Mediated Inhibition of Cognate Gingipain Proteinases

N. Laila Huq; Christine A. Seers; Elena C. Y. Toh; Stuart G. Dashper; Nada Slakeski; Lianyi Zhang; Brent R. Ward; Vincent Meuric; Dina Chen; Keith J. Cross; Eric C. Reynolds

Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism’s cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with Ki values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases.


PLOS ONE | 2016

PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System.

Jacqueline E. Heath; Christine A. Seers; Paul D. Veith; Catherine A. Butler; Nor A. Nor Muhammad; Yu-Yen Chen; Nada Slakeski; Benjamin Peng; Lianyi Zhang; Stuart G. Dashper; Keith J. Cross; Steven M. Cleal; Caroline Moore; Eric C. Reynolds

Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS.


Journal of Biological Inorganic Chemistry | 2008

Electron paramagnetic resonance characterization of the copper-resistance protein PcoC from Escherichia coli

Simon C. Drew; Karrera Y. Djoko; Lianyi Zhang; M.S.T. Koay; John F. Boas; John R. Pilbrow; Zhiguang Xiao; Kevin J. Barnham; Anthony G. Wedd

Continuous-wave and pulsed electron paramagnetic resonance have been applied to the study of the CuII site of the copper-resistance protein PcoC from Escherichia coli and certain variant forms. Electron spin echo envelope modulation (ESEEM) experiments confirm the presence of two histidine ligands, His1 and His92, at the CuII site of wild-type PcoC, consistent with the available X-ray crystallographic data for the homolog CopC (67% sequence identity) from Pseudomonas syringae pv. tomato. The variants H1F and H92F each lack one of the histidine residues close to the CuII site. The ESEEM data suggest that the surviving histidine residue remains as a ligand. The nA variant features an extra alanine residue at the N terminus, which demotes the His1 ligand to position 2. At least one of the two histidine residues is bound at the CuII site in this form. Simulation of the 14N superhyperfine structure in the continuous-wave spectra confirms the presence of at least three nitrogen-based ligands at the CuII sites of the wild-type, H92F and nA forms, while the H1F variant has two nitrogen ligands. The spectra of wild-type form can be fitted adequately with a 3N or a 4N model. The former is consistent with the crystal structure of the CopC homolog, where His1 acts as a bidentate ligand. The latter raises the possibility of an additional unidentified nitrogen ligand. The markedly different spectra of the H1F and nA forms compared with the wild-type and H92F proteins further highlight the integral role of the N-terminal histidine residue in the high-affinity CuII site of PcoC.


Organic and Biomolecular Chemistry | 2004

Formation of the heterocumulene anion SCCCN− by a cyano migration from the radical anion of 1,2-dicyanoethylenedithiolate

Tom Waters; Stephen J. Blanksby; Lianyi Zhang; Richard A. J. O'Hair

The anionic heterocumulene SCCCN(-) was generated in the gas phase by collisional activation of the radical anion of 1,2-dicyanoethylenedithiolate. The mechanism of this reaction, as well as the structures of neutral and anionic products, was investigated by hybrid density functional theory (DFT) calculations. Dissociation to form SCCCN(-) and SCN is proposed to occur by a radical directed cyano migration reaction, with calculations suggesting this is the lowest energy fragmentation pathway available to the precursor anion. In contrast, the even-electron protonated 1,2-dicyanoethylenedithiolate anion fragmented by loss of HCN.


Journal of Proteome Research | 2018

Porphyromonas gingivalis Gingipains Display Transpeptidation Activity

Lianyi Zhang; Paul D. Veith; N. Laila Huq; Yu-Yen Chen; Christine A. Seers; Keith J. Cross; Dhana G. Gorasia; Eric C. Reynolds

Porphyromonas gingivalis is a keystone periodontal pathogen that has been associated with autoimmune disorders. The cell surface proteases Lys-gingipain (Kgp) and Arg-gingipains (RgpA and RgpB) are major virulence factors, and their proteolytic activity is enhanced by small peptides such as glycylglycine (GlyGly). The reaction kinetics suggested that GlyGly may function as an acceptor molecule for gingipain-catalyzed transpeptidation. Purified gingipains and P. gingivalis whole cells were used to digest selected substrates including human hemoglobin in the presence or absence of peptide acceptors. Mass spectrometric analysis of the substrates digested with gingipains in the presence of GlyGly showed that transpeptidation outcompeted hydrolysis, whereas the trypsin-digested controls exhibited predominantly hydrolysis activity. The transpeptidation levels increased with increasing concentration of GlyGly. Purified gingipains and whole cells exhibited extensive transpeptidation activities on human hemoglobin. All hemoglobin cleavage sites were found to be suitable for GlyGly transpeptidation, and this transpeptidation enhanced hemoglobin digestion. The transpeptidation products were often more abundant than the corresponding hydrolysis products. In the absence of GlyGly, hemoglobin peptides produced during digestion were utilized as acceptors leading to the detection of up to 116 different transpeptidation products in a single reaction. P. gingivalis cells were able to digest hemoglobin faster when acceptor peptides derived from human serum albumin were included in the reaction, suggesting that gingipain-catalyzed transpeptidation may be relevant for substrates encountered in vivo. The transpeptidation of host proteins in vivo may potentially lead to the breakdown of immunological tolerance, culminating in autoimmune reactions.


PLOS ONE | 2016

Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue.

Lianyi Zhang; Catherine A. Butler; Hasnah S.G. Khan; Stuart G. Dashper; Christine A. Seers; Paul D. Veith; Jian Guo Zhang; Eric C. Reynolds

PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s) with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II) per monomer with an overall dissociation constant Kd 2.0 x 10−11 M at pH 7.5. PgMntR also bound two Fe(II) with distinct binding affinities, Kd1 2.5 x 10−10 M and Kd2 ≤ 6.0 x 10−8 M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.


FEBS Letters | 2013

Reversible redox regulation of specificity of Arg-gingipain B in Porphyromonas gingivalis

Yu-Yen Chen; Christine A. Seers; Nada Slakeski; Caroline Moore; Lianyi Zhang; Eric C. Reynolds

Arg‐gingipain B (RgpB), a major virulence factor secreted by the periodontal pathogen Porphyromonas gingivalis is an Arg‐specific cysteine proteinase. By monitoring proteolytic cleavage of a human salivary peptide histatin 5 using MALDI‐TOF MS, RgpB purified from P. gingivalis HG66 was found to shift from a dominant Arg‐X to dominant Lys‐X activity, both in vitro and in vivo, upon reversible cysteine oxidation. Native PAGE analysis revealed the association of novel Lys‐X activity with a reversible state change of the oxidized enzyme. The redox‐regulated Lys‐X activity of RgpB may provide a survival advantage to P. gingivalis against the oxidative host defence.


Journal of the American Chemical Society | 2006

Intermolecular Transfer of Copper Ions from the Copc Protein of Pseudomonas Syringae. Crystal Structures of Fully Loaded Cu(I)Cu(II) Forms.

Lianyi Zhang; M.S.T. Koay; Megan J. Maher; Zhiguang Xiao; Anthony G. Wedd

Collaboration


Dive into the Lianyi Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Waters

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge