Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart G. Dashper is active.

Publication


Featured researches published by Stuart G. Dashper.


Antimicrobial Agents and Chemotherapy | 2001

Kappacin, a Novel Antibacterial Peptide from Bovine Milk

Marina Malkoski; Stuart G. Dashper; Neil M. O'Brien-Simpson; Gert H. Talbo; Mary Macris; Keith J. Cross; Eric C. Reynolds

ABSTRACT Caseinomacropeptide (CMP) is a heterogeneous C-terminal fragment (residues 106 to 169) of bovine milk κ-casein composed of glycosylated and phosphorylated forms of different genetic variants. We have demonstrated that CMP has growth-inhibitory activity against the oral opportunistic pathogens Streptococcus mutans andPorphyromonas gingivalis and against Escherichia coli. CMP was fractionated using reversed-phase high-performance liquid chromatography (RP-HPLC), and each fraction was tested for activity against S. mutans in a 96-well-plate broth assay. Fractions were characterized by N-terminal sequence analysis and mass spectrometry. The active form of CMP was shown to be the nonglycosylated, phosphorylated κ-casein (residues 106 to 169) [κ-casein(106–169)], which we have designated kappacin. Endoproteinase Glu-C was used to hydrolyze CMP, and the generated peptides were separated using RP-HPLC and gel filtration-HPLC and then tested for activity against S. mutans. The peptide Ser(P)149κ-casein-A(138–158) was the only peptide generated by endoproteinase Glu-C digestion that exhibited growth-inhibitory activity. Peptides corresponding to the sequences of the inhibitory peptide Ser(P)149κ-casein-A(138–158) and its nonphosphorylated counterpart κ-casein-A(138–158) were chemically synthesized and tested for antibacterial activity. The synthetic Ser(P)149 κ-casein-A(138–158) displayed growth-inhibitory activity against S. mutans(MIC, 59 μg/ml [26 μM]). The nonphosphorylated peptide, however, did not inhibit growth at the concentrations tested, indicating that phosphorylation is essential for activity.


Current Protein & Peptide Science | 2003

Porphyromonas gingivalis Gingipains: The Molecular Teeth of a Microbial Vampire

Neil M. O'Brien-Simpson; Paul D. Veith; Stuart G. Dashper; Eric C. Reynolds

The gingipains are cell surface Arg- and Lys-specific proteinases of the bacterium Porphyromons gingivalis, which has been associated with periodontitis, a disease that results in the destruction of the teeth-s supporting tissues. The proteinases are encoded by three genes designated rgpA, rgpB and kgp. Arg-specific proteolytic activity is encoded by rgpA/B and the Lys-specific activity by kgp. RgpA and Kgp are polyproteins comprising proteinases with C-terminal adhesin domains that are proteolytically processed. After processing, the domains remain non-covalently associated as complexes on the cell surface. RgpB is also a cell surface proteinase but does not associate with adhesin domains. Using gene knockout P. gingivalis mutants, the proteolytic processing of the gingipain domains has been shown to involve the gingipains themselves as well as C-terminal processing by a carboxypeptidase. A motif in the C-terminal domain of each protein/polyprotein has been identified that is suggested to be involved in attachment to LPS on the cell surface. RgpB lacks a C-terminal adhesin binding motif found in the catalytic domains of RgpA and Kgp. This adhesin binding motif is proposed to be responsible for the non-covalent association of the RgpA and Kgp catalytic domains into the cell surface complexes with the processed adhesin domains. The RgpA-Kgp proteinase-adhesin complexes, through the adhesin domains A1 and A3, have been implicated in colonization of P. gingivalis by binding to other bacteria in subgingival plaque and also binding to crevicular epithelial cells. The RgpA-Kgp complexes also bind to fibrinogen, laminin, collagen type V, fibronectin and hemoglobin. Amino acid sequences likely to be involved in binding to these host proteins have been identified in adhesin domains A1 and A3. It is proposed that these adhesins target the proteolytic activity to host cell surface matrix proteins and receptors. The continual cycle of binding and degradation of the surface proteins/receptors on epithelial, fibroblast and endothelial cells by the RgpA-Kgp complexes in the gingival tissue leading to cell death would contribute to inflammation, tissue destruction and vascular disruption (bleeding). P. gingivalis has an obligate growth requirement for iron and protoporphyrin IX, which it preferentially utilizes in the form of hemoglobin. Kgp proteolytic activity is essential for rapid hydrolysis of hemoglobin and it is suggested therefore that a major role of the RgpA-Kgp complexes is in vascular disruption and the binding and rapid degradation of hemoglobin for heme assimilation by P. gingivalis. The RgpA-Kgp complexes also have a major role in the evasion and dysregulation of the host-s immune response. It is proposed that host pro-inflammatory cytokines and cellular receptors close to the infection site may be rapidly and efficiently degraded by the gingipains while the proteinases at lower concentrations distally could result in the promotion of an inflammatory response through activation of proteinase-activated receptors and cytokine release. The culmination of this dysregulation would be tissue destruction and bone resorption. In animal models of disease the RgpA-Kgp complex when used as a vaccine to produce a high titre antibody response protects against challenge with P. gingivalis. Using recombinant domains of RgpA and Kgp as vaccines, it has been demonstrated that the A1 and A3 domains confer protection.


Oral Microbiology and Immunology | 2009

Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque.

Samantha J. Byrne; Stuart G. Dashper; Ivan Darby; Geoffrey G. Adams; Brigitte Hoffmann; Eric C. Reynolds

INTRODUCTION Chronic periodontitis is an inflammatory disease of the supporting tissues of the teeth associated with bacteria. Diagnosis is achieved retrospectively by clinical observation of attachment loss. Predicting disease progression would allow for targeted preventive therapy. The aim of this study was to monitor disease progression in patients on a maintenance program and determine the levels of specific bacteria in subgingival plaque samples and then examine the ability of the clinical parameters of disease and levels of specific bacteria in the plaque samples to predict disease progression. METHODS During a 12-month longitudinal study of 41 subjects, 25 sites in 21 subjects experienced disease progression indicated by at least 2 mm of clinical attachment loss. Real-time polymerase chain reaction was used to determine the levels of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella intermedia in subgingival plaque samples. RESULTS No clinical parameters were able to predict periodontal disease progression. In sites undergoing imminent periodontal disease progression within the next 3 months, significant partial correlations were found between P. gingivalis and T. forsythia (r = 0.55, P < 0.001) and T. denticola and T. forsythia (r = 0.43, P = 0.04). The odds of a site undergoing imminent periodontal disease progression increased with increasing levels of P. gingivalis and T. denticola. CONCLUSION Monitoring the proportions of P. gingivalis and T. denticola in subgingival plaque has the potential to help identify sites at significant risk for progression of periodontitis, which would assist in the targeted treatment of disease.


Biochemical Journal | 2002

Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50

Paul D. Veith; Gert H. Talbo; Nada Slakeski; Stuart G. Dashper; Caroline Moore; Rita A. Paolini; Eric C. Reynolds

Porphyromonas gingivalis is an anaerobic, asaccharolytic Gram-negative rod associated with chronic periodontitis. We have undertaken a proteomic study of the outer membrane of P. gingivalis strain W50 using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteins were identified by reference to the pre-release genomic sequence of P. gingivalis available from The Institute for Genomic Research. Out of 39 proteins identified, five were TonB-linked outer membrane receptors, ten others were putative integral outer membrane proteins and four were putative lipoproteins. Pyroglutamate was found to be the N-terminal residue of seven of the proteins, and was predicted to be the N-terminal residue of 13 additional proteins. The RgpA, Kgp and HagA polyproteins were identified as fully processed domains in outer membranes prepared in the presence of proteinase inhibitors. Several domains were found to be C-terminally truncated 16-57 residues upstream from the N-terminus of the following domain, at a residue penultimate to a lysine. This pattern of C-terminal processing was not detected in a W50 strain isogenic mutant lacking the lysine-specific proteinase Kgp. Construction of another W50 isogenic mutant lacking the arginine-specific proteinases indicated that RgpB and/or RgpA were also involved in domain processing. The C-terminal adhesin of RgpA, designated RgpA27, together with RgpB and two newly identified proteins designated P27 and P59 were found to migrate on two-dimensional gels as vertical streaks at a molecular mass 13-42 kDa higher than that calculated from their gene sequences. The electrophoretic behaviour of these proteins, together with their immunoreactivity with a monoclonal antibody that recognizes lipopolysaccharide, is consistent with a modification that could anchor the proteins to the outer membrane.


Journal of Bacteriology | 2006

The RgpB C-Terminal Domain Has a Role in Attachment of RgpB to the Outer Membrane and Belongs to a Novel C-Terminal-Domain Family Found in Porphyromonas gingivalis

Christine A. Seers; Nada Slakeski; Paul D. Veith; Todd Nikolof; Yu-Yen Chen; Stuart G. Dashper; Eric C. Reynolds

Porphyromonas gingivalis produces outer membrane-attached proteins that include the virulence-associated proteinases RgpA and RgpB (Arg-gingipains) and Kgp (Lys-gingipain). We analyzed the P. gingivalis outer membrane proteome and identified numerous proteins with C-terminal domains similar in sequence to those of RgpB, RgpA, and Kgp, indicating that these domains may have a common function. Using RgpB as a model to investigate the role of the C-terminal domain, we expressed RgpB as a full-length zymogen (recombinant RgpB [rRgpB]), with a catalytic Cys244Ala mutation [rRgpB(C244A)], or with the C-terminal 72 amino acids deleted (rRgpB435) in an Arg-gingipain P. gingivalis mutant (YH522AB) and an Arg- and Lys-gingipain mutant (YH522KAB). rRgpB was catalytically active and located predominantly attached to the outer membrane of both background strains. rRgpB(C244A) was inactive and outer membrane attached, with a typical attachment profile for both background strains according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but in YH522KAB, the prodomain was not removed. Thus, in vivo, RgpB export and membrane attachment are independent of the proteolytic activity of RgpA, RgpB, or Kgp. However, for maturation involving proteolytic processing of RgpB, the proteolytic activity of RgpB, RgpA, or Kgp is required. The C-terminally-truncated rRgpB435 was not attached to the outer membrane and was located as largely inactive, discrete 71-kDa and 48-kDa isoforms in the culture supernatant and the periplasm. These results suggest that the C-terminal domain is essential for outer membrane attachment and may be involved in a coordinated process of export and attachment to the cell surface.


Infection and Immunity | 2001

Role of RgpA, RgpB, and Kgp Proteinases in Virulence of Porphyromonas gingivalis W50 in a Murine Lesion Model

Neil M. O'Brien-Simpson; Rita A. Paolini; Brigitte Hoffmann; Nada Slakeski; Stuart G. Dashper; Eric C. Reynolds

ABSTRACT Extracellular Arg-x- and Lys-x-specific cysteine proteinases are considered important virulence factors and pathogenic markers forPorphyromonas gingivalis, a bacterium implicated as a major etiological agent of chronic periodontitis. Three genes.rgpA, rgpB, and kgp,encode an Arg-x-specific proteinase and adhesins (RgpA), an Arg-x-specific proteinase (RgpB), and a Lys-x-specific proteinase and adhesins (Kgp), respectively. The contribution to pathogenicity of each of the proteinase genes of P. gingivalis W50 was investigated in a murine lesion model using isogenic mutants lacking RgpA, RgpB, and Kgp. Whole-cell Arg-x-specific proteolytic activity of both the RgpA− and RgpB− isogenic mutants was significantly reduced (3- to 4-fold) relative to that of the wild-type W50. However, for the Kgp− isogenic mutant, whole-cell Arg-x activity was similar to that of the wild-type strain. Whole-cell Lys-x proteolytic activity of the RgpA− and RgpB− mutants was not significantly different from that of wild-type W50, whereas the Kgp− mutant was devoid of Lys-x whole-cell proteolytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis using proteinase-specific antibodies of cell sonicates of the wild-type and mutant strains showed that the proteinase catalytic domain of each of the mutants was not expressed. This analysis further showed that RgpB appeared as 72- and 80-kDa bands, and the catalytic domains of RgpA and Kgp appeared as processed 45-kDa and 48-kDa bands, respectively. In the murine lesion model, mice were challenged with three doses of each mutant and wild-type strain. At the lower dose (3.0 × 109 viable-cells), no lesions were recorded for each of the mutants, whereas wild-type W50 induced large ulcerative lesions. At a dose of 6.0 × 109 viable-cells, all the mice challenged with the wild-type strain died, whereas mice challenged with the RgpA− and RgpB− isogenic mutants did not die but developed lesions. Mice challenged with the Kgp−isogenic mutant at this dose did not develop lesions. At a 1.2 × 1010 viable-cell dose, only 40% of mice challenged with the Kgp− mutant developed lesions, and these lesions were significantly smaller than lesions induced by the wild-type strain at the 3.0 × 109 viable-cell dose. All the mice challenged with the RgpA− mutant died at the 1.2 × 1010 viable-cell dose, whereas only 20% died when challenged with the RgpB− mutant at this dose. Wild-type phenotype was restored to the RgpB− mutant by complementation with plasmid pNJR12::rgpBcontaining the rgpB gene. There was no difference between the pNJR12::rgpB-complemented RgpB− mutant and the wild-type W50 strain in whole-cell Arg-x activity, protein profile, or virulence in the murine lesion model. These results show that the three proteinases, RgpA, RgpB, and Kgp, all contributed to virulence of P. gingivalis W50 in the murine lesion model and that the order in which they contributed was Kgp ≫ RgpB ≥ RgpA.


Journal of Dental Research | 2011

Virulence Factors of the Oral Spirochete Treponema denticola

Stuart G. Dashper; Christine A. Seers; Kheng H. Tan; Eric C. Reynolds

There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease.


Journal of Bacteriology | 2000

Characterization of a Novel Outer Membrane Hemin-Binding Protein of Porphyromonas gingivalis

Stuart G. Dashper; Anne Hendtlass; Nada Slakeski; Christine A. Jackson; Keith J. Cross; L. Brownfield; R. Hamilton; Ian G. Barr; Eric C. Reynolds

Porphyromonas gingivalis is a gram-negative, anaerobic coccobacillus that has been implicated as a major etiological agent in the development of chronic periodontitis. In this paper, we report the characterization of a protein, IhtB (iron heme transport; formerly designated Pga30), that is an outer membrane hemin-binding protein potentially involved in iron assimilation by P. gingivalis. IhtB was localized to the cell surface of P. gingivalis by Western blot analysis of a Sarkosyl-insoluble outer membrane preparation and by immunocytochemical staining of whole cells using IhtB peptide-specific antisera. The protein, released from the cell surface, was shown to bind to hemin using hemin-agarose. The growth of heme-limited, but not heme-replete, P. gingivalis cells was inhibited by preincubation with IhtB peptide-specific antisera. The ihtB gene was located between an open reading frame encoding a putative TonB-linked outer membrane receptor and three open reading frames that have sequence similarity to ATP binding cassette transport system operons in other bacteria. Analysis of the deduced amino acid sequence of IhtB showed significant similarity to the Salmonella typhimurium protein CbiK, a cobalt chelatase that is structurally related to the ATP-independent family of ferrochelatases. Molecular modeling indicated that the IhtB amino acid sequence could be threaded onto the CbiK fold with the IhtB structural model containing the active-site residues critical for chelatase activity. These results suggest that IhtB is a peripheral outer membrane chelatase that may remove iron from heme prior to uptake by P. gingivalis.


Journal of Biological Chemistry | 2005

A Novel Porphyromonas gingivalis FeoB Plays a Role in Manganese Accumulation

Stuart G. Dashper; Catherine A. Butler; J. Patricia Lissel; Rita A. Paolini; Brigitte Hoffmann; Paul D. Veith; Neil M. O'Brien-Simpson; Sarah L. Snelgrove; John T. Tsiros; Eric C. Reynolds

FeoB is an atypical transporter that has been shown to exclusively mediate ferrous ion transport in some bacteria. Unusually the genome of the periodontal pathogen Porphyromonas gingivalis has two genes (feoB1 and feoB2) encoding FeoB homologs, both of which are expressed in bicistronic operons. Kinetic analysis of ferrous ion transport by P. gingivalis W50 revealed the presence of a single, high affinity system with a Kt of 0.31 μm. FeoB1 was found to be solely responsible for this transport as energized cells of the isogenic FeoB1 mutant (W50FB1) did not transport radiolabeled iron, while the isogenic FeoB2 mutant (W50FB2) transported radiolabeled iron at a rate similar to wild type. This was reflected in the iron content of W50FB1 grown in iron excess conditions which was approximately half that of the wild type and W50FB2. The W50FB1 mutant had increased sensitivity to both oxygen and hydrogen peroxide and was avirulent in an animal model of infection whereas W50FB2 exhibited the same virulence as the wild type. Analysis of manganous ion uptake using inductively coupled plasma-mass spectrometry revealed a greater than 3-fold decrease in intracellular manganese accumulation in W50FB2 which was also unable to grow in manganese-limited media. The protein co-expressed with FeoB2 appears to be a novel FeoA-MntR fusion protein that exhibits homology to a manganese-responsive, DNA-binding metalloregulatory protein. These results indicate that FeoB2 is not involved in iron transport but plays a novel role in manganese transport.


Molecular Microbiology | 2011

The outer membrane protein LptO is essential for the O-deacylation of LPS and the co-ordinated secretion and attachment of A-LPS and CTD proteins in Porphyromonas gingivalis

Yu-Yen Chen; Benjamin Peng; Qiaohui Yang; Michelle D. Glew; Paul D. Veith; Keith J. Cross; Kenneth N. Goldie; Dina Chen; Neil M. O'Brien-Simpson; Stuart G. Dashper; Eric C. Reynolds

Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C‐terminal domain (CTD) essential for secretion and attachment to the cell surface. Inactivation of lptO (PG0027) or porT produced mutants that lacked surface protease activity and an electron‐dense surface layer. Both mutants showed co‐accumulation of A‐LPS and unmodified CTD proteins in the periplasm. Lipid profiling by mass spectrometry showed the presence of both tetra‐ and penta‐acylated forms of mono‐phosphorylated lipid A in the wild‐type and porT mutant, while only the penta‐acylated forms of mono‐phosphorylated lipid A were found in the lptO mutant, indicating a specific role of LptO in the O‐deacylation of mono‐phosphorylated lipid A. Increased levels of non‐phosphorylated lipid A and the presence of novel phospholipids in the lptO mutant were also observed that may compensate for the missing mono‐phosphorylated tetra‐acylated lipid A in the outer membrane (OM). Molecular modelling predicted LptO to adopt a β‐barrel structure characteristic of an OM protein, supported by the enrichment of LptO in OM vesicles. The results suggest that LPS deacylation by LptO is linked to the co‐ordinated secretion of A‐LPS and CTD proteins by a novel secretion and attachment system to form a structured surface layer.

Collaboration


Dive into the Stuart G. Dashper's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge