Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liberato Berrino is active.

Publication


Featured researches published by Liberato Berrino.


Journal of Experimental Medicine | 2008

Human interleukin 17–producing cells originate from a CD161+CD4+ T cell precursor

Lorenzo Cosmi; Raffaele De Palma; Veronica Santarlasci; Laura Maggi; Manuela Capone; Francesca Frosali; Gabriella Rodolico; Valentina Querci; Gianfranco Abbate; Roberta Angeli; Liberato Berrino; Massimiliano Fambrini; Marzia Caproni; Francesco Tonelli; Elena Lazzeri; Paola Parronchi; Francesco Liotta; Enrico Maggi; Sergio Romagnani; Francesco Annunziato

We demonstrate that CD161 is a highly up-regulated gene in human interleukin (IL) 17 T helper cell (Th17) clones and that all IL-17–producing cells are contained in the CD161+ fraction of CD4+ T cells present in the circulation or in inflamed tissues, although they are not CD1-restricted natural killer T cells. More importantly, we show that all IL-17–producing cells originate from CD161+ naive CD4+ T cells of umbilical cord blood, as well as of the postnatal thymus, in response to the combined activity of IL-1β and IL-23. These findings implicate CD161 as a novel surface marker for human Th17 cells and demonstrate the exclusive origin of these cells from a CD161+CD4+ T cell progenitor.


Neuropharmacology | 2001

Metabotropic and NMDA glutamate receptors participate in the cannabinoid-induced antinociception.

Enza Palazzo; Ida Marabese; V. de Novellis; Patrizia Oliva; Francesco Rossi; Liberato Berrino; F. sca Rossi; Sabatino Maione

The purpose of this study was to evaluate the possible contribution of metabotropic glutamate receptors (mGluRs) to cannabinoid-induced antinociception in the periaqueductal grey (PAG) matter of rats. Intra-PAG microinjection of WIN 55,212-2, a cannabinoid receptor agonist, increased the latency of the nociceptive reaction (NR) in a dose-dependent fashion in the plantar test. This effect was prevented by pretreatment with SR141716A, a selective antagonist of CB1 receptors. When injected alone, SR141716A produced, with the highest dosage used, a significant reduction in the latency of the NR. CPCCOEt, a selective mGlu1 receptor antagonist, was unable to prevent the analgesia produced by WIN 55,212-2. On the contrary, MPEP, a selective mGlu5 receptor antagonist, completely antagonized the effect of WIN 55,212-2. However, the analgesia induced by CHPG, a selective mGlu5 receptor agonist, was blocked by MPEP but not by SR141716A. When injected alone, CPCOOEt produced no effect, whereas MPEP produced, with the highest dosage used, a significant reduction in the latency of the NR. These data emphasize that mGlu5 receptors, but not mGluR1, may modulate nociception in the PAG. Similarly, a pretreatment with either 2-(S)-alpha-EGlu or (RS)-alpha-MSOP, selective antagonists for group II and III mGluRs, respectively, prevented the WIN 55,212-2-induced analgesia. When the higher dosage of (RS)-alpha-MSOP was used a decrease in the latency of the NR was observed. This was not the case for 2-(S)-alpha-EGlu. Pretreatment with DL-AP5, a selective antagonist of N-methyl-D-aspartate (NMDA) receptors, blocked the effect of WIN 55,212-2, and by increasing the dosage strongly reduced per se the latency of the NR. This study suggests that endogenous glutamate could tonically modulate nociception through mGlu and NMDA receptors in the PAG matter. In particular, the physiological stimulation of these receptors seems to be required for the cannabinoid-induced analgesia in this midbrain area.


Circulation | 2006

Patients With Acute Coronary Syndrome Show Oligoclonal T-Cell Recruitment Within Unstable Plaque Evidence for a Local, Intracoronary Immunologic Mechanism

Raffaele De Palma; Francesco Del Galdo; Gianfranco Abbate; Massimo Chiariello; Raffaele Calabrò; Lavinia Forte; Giovanni Cimmino; Maria Francesca Papa; Maria Giovanna Russo; Giuseppe Ambrosio; Claudio Giombolini; Isabella Tritto; Salvatore Notaristefano; Liberato Berrino; Francesco Rossi; Paolo Golino

Background— Recent studies indicate that T-cell activation may play an important role in the pathophysiology of acute coronary syndromes (ACS). However, although those studies detected T-cell expansion in peripheral blood cells, demonstration of specific T-cell expansion within the plaque of patients with ACS is lacking. The present study aims to address whether a specific, immune-driven T-lymphocyte recruitment occurs within the unstable plaque of patients with ACS. Methods and Results— We simultaneously examined the T-cell repertoire using CDR3 size analysis both in coronary plaques (obtained by directional atherectomy) and in peripheral blood of patients with either ACS (n=11) or chronic stable angina (n=10). Unstable plaques showed a 10-fold increase in T-cell content by quantitative PCR. Using spectratyping analysis, we found several specific T-cell clonotype expansions only in unstable plaque from each patient with ACS, indicating a specific, antigen-driven recruitment of T cells within unstable lesions. Conclusions— For the first time, T-cell repertoire was investigated directly into coronary plaques; using this approach, we demonstrate that coronary plaque instability in the setting of ACS is associated with immune-driven T-cell recruitment, specifically within the plaque.


European Journal of Pharmacology | 2002

The antinociceptive effect of tramadol in the formalin test is mediated by the serotonergic component

Patrizia Oliva; Caterina Aurilio; Francesco Massimo; Antonio Grella; Sabatino Maione; Elisa Grella; Mariantonietta Scafuro; Francesco Rossi; Liberato Berrino

The aim of this study was to investigate the neurotransmissions involved in the antinociceptive effect of tramadol in the formalin test, which is an animal model of acute and tonic pain. A subcutaneous injection of formalin produces a biphasic nociceptive response: phase 1 (0-10 min-acute pain) and phase 2 (21-60 min-tonic pain). Nociceptive activity is reduced greatly during the 10 min between these two phases. We measured in mice the effects of (+/-)-tramadol, and of (+)- and (-)-tramadol administered before the induction of pain by formalin, in the presence and absence of drugs that act on the opioidergic, serotonergic and noradrenergic systems (naloxone, ketanserin, fluoxetine, maprotiline). With respect to animals treated with formalin alone, (+/-)-tramadol and its enantiomers significantly reduced the duration of nociceptive behaviours (lifting, licking, favouring, shaking, and flinching of the formalin-treated paw) during phase 2. This effect was prevented by the 5-HT(2) receptor antagonist ketanserin, but not by naloxone which, on the contrary, was able to prevent the antinociceptive effect of morphine. Naloxone and ketanserin did not affect the duration of nociceptive behaviour in animals not treated with tramadol. Fluoxetine (a selective 5-hydroxytryptamine (5-HT) reuptake inhibitor), but not maprotiline (a selective norepinephrine reuptake inhibitor), potentiated the antinociceptive effect of (+/-)-tramadol. In conclusion, we demonstrate that the serotonergic pathway is responsible for the antinociceptive effect of tramadol in phase 2 of the formalin test, and that this effect is mediated by 5-HT(2) receptors.


Pain | 2000

Periaqueductal gray matter metabotropic glutamate receptors modulate formalin-induced nociception

Sabatino Maione; Patrizia Oliva; Ida Marabese; Enza Palazzo; Francesca Rossi; Liberato Berrino; Francesco Rossi; Amelia Filippelli

Abstract The role played by periaqueductal gray (PAG) matter metabotropic glutamate receptors (mGluRs) in the modulation of persistent noxious stimulation was investigated in mice. The formalin test was used as a model of persistent pain. Intra‐PAG microinjections of (S)‐3,5‐DHPG (25 and 50 nmol/mouse) and L‐CCG‐I (30 and 60 nmol/mouse), agonists of group I and group II mGluRs, respectively, decreased the nociceptive response (−92±6% and −89±8%, respectively) during the late phase. No change of the early nociceptive phase was observed after (S)‐3,5‐DHPG or L‐CCG‐I treatments. These effects were antagonized by a pretreatment with CPCCOEt (40 nmol/mouse) and (2S)‐&agr;‐EGlu (30 nmol/mouse). CPCCOEt is a selective antagonist of group I mGlu receptors, while (2S)‐&agr;‐EGlu is an antagonist of group II. Intra‐PAG microinjections of L‐SOP (60 and 120 nmol/mouse), a selective agonist of group III mGluRs, induced an increase of the nociceptive response (+95±7%) during the late hyperalgesic phase. (R,S)‐&agr;‐M‐SOP (70 nmol/mouse), a selective antagonist of group III mGluRs, completely antagonized the L‐SOP‐induced effect. These results show that PAG mGluRs participate in modulating the late hyperalgesic behaviours induced by formalin. It seems, therefore, possible that group I and group II mGluRs positively modulate PAG antinociceptive descending pathway following a persistent noxious stimulation, while group III mGluRs modulate it negatively.


Clinical Cancer Research | 2013

Increased TGF-α as a Mechanism of Acquired Resistance to the Anti-EGFR Inhibitor Cetuximab through EGFR–MET Interaction and Activation of MET Signaling in Colon Cancer Cells

Teresa Troiani; Erika Martinelli; Stefania Napolitano; D. Vitagliano; Loreta Pia Ciuffreda; Sarah Costantino; Floriana Morgillo; Anna Capasso; V. Sforza; Anna Nappi; Raffaele De Palma; Elena D'Aiuto; Liberato Berrino; Roberto Bianco; Fortunato Ciardiello

Purpose: Although cetuximab, an anti-EGF receptor (EGFR) monoclonal antibody, is an effective treatment for patients with KRAS wild-type metastatic colorectal cancer (mCRC), its clinical use is limited by onset of resistance. Experimental Design: We characterized two colorectal cancer models to study the mechanisms of acquired resistance to cetuximab. Results: Following chronic treatment of nude mice bearing cetuximab-sensitive human GEO colon xenografts, cetuximab-resistant GEO (GEO-CR) cells were obtained. In GEO-CR cells, proliferation and survival signals were constitutively active despite EGFR inhibition by cetuximab treatment. Whole gene expression profiling identified a series of genes involved in the hepatocyte growth factor (HGF)-MET–dependent pathways, which were upregulated in GEO-CR cells. Furthermore, activated, phosphorylated MET was detected in GEO-CR cells. A second colorectal cancer cell line with acquired resistance to cetuximab was obtained (SW48-CR). Inhibition of MET expression by siRNA restored cetuximab sensitivity in GEO-CR and SW48-CR cells, whereas exogenous activation of MET by HGF stimulation in cetuximab-sensitive GEO and SW48 cells induced resistance to cetuximab. Treatment of GEO-CR and SW48-CR cells with PHA665752, a selective MET inhibitor, inhibited cell growth, proliferation, and survival signals and impaired cancer cell migration. Overexpression of TGF-α, a specific EGFR ligand, was involved in the acquisition of cetuximab resistance in GEO-CR and SW48-CR cells. In fact, TGF-α overexpression induced the EGFR–MET interaction, with subsequent MET phosphorylation and activation of MET downstream effectors in GEO-CR and SW48-CR cells. Conclusions: These results suggest that overexpression of TGF-α through induction of EGFR–MET interaction contributes to cetuximab resistance in colorectal cancer cells. The combined inhibition of EGFR and MET receptor could represent a strategy for preventing and/or overcoming cetuximab resistance in patients with colorectal cancer. Clin Cancer Res; 19(24); 6751–65. ©2013 AACR.


Clinical Cancer Research | 2010

Synergistic Antitumor Activity of Sorafenib in Combination with Epidermal Growth Factor Receptor Inhibitors in Colorectal and Lung Cancer Cells

Erika Martinelli; Teresa Troiani; Floriana Morgillo; Gabriella Rodolico; Donata Vitagliano; Maria Pia Morelli; Concetta Tuccillo; Loredana Vecchione; Anna Capasso; Michele Orditura; Ferdinando De Vita; S. Gail Eckhardt; Massimo Santoro; Liberato Berrino; Fortunato Ciardiello

Purpose: Cancer cell survival, invasion, and metastasis depend on cancer cell proliferation and on tumor-induced angiogenesis. We evaluated the efficacy of the combination of sorafenib and erlotinib or cetuximab. Experimental Design: Sorafenib, erlotinib, and cetuximab, alone or in combination, were tested in vitro in a panel of non–small cell lung cancer (NSCLC) and colorectal cancer cell lines and in vivo in H1299 tumor xenografts. Results: Epidermal growth factor receptor (EGFR) ligand mRNAs were expressed in all NSCLC and colorectal cancer cell lines with variable levels ranging from 0.4- to 8.1-fold as compared with GEO colorectal cancer cells. Lung cancer cells had the highest levels of vascular endothelial growth factors (VEGF) A, B, and C, and of VEGF receptors as compared with colorectal cancer cells. Combined treatments of sorafenib with erlotinib or cetuximab produced combination index values between 0.02 and 0.5, suggesting a significant synergistic activity to inhibit soft agar colony formation in all cancer cell lines, which was accompanied by a marked blockade in mitogen-activated protein kinase and AKT signals. The in vitro migration of H1299 cells, which expressed high levels of both VEGF ligands and receptors, was inhibited by treatment with sorafenib, and this effect was significantly increased by the combination with anti-EGFR drugs. In nude mice bearing established human H1299 xenografts, treatment with the combination of sorafenib and erlotinib or cetuximab caused a significant tumor growth delay resulting in 70 to 90 days increase in mice median overall survival as compared with single-agent sorafenib treatment. Conclusions: Combination treatment with sorafenib and erlotinib or cetuximab has synergistic antitumor effects in human colorectal and lung cancer cells. Clin Cancer Res; 16(20); 4990–5001. ©2010 AACR.


Basic Research in Cardiology | 2013

Doxorubicin induces senescence and impairs function of human cardiac progenitor cells

Elena Piegari; Antonella De Angelis; Donato Cappetta; Rosa Russo; Grazia Esposito; Sarah Costantino; Gallia Graiani; Caterina Frati; Lucia Prezioso; Liberato Berrino; Konrad Urbanek; Federico Quaini; Francesco Rossi

The increasing population of cancer survivors faces considerable morbidity and mortality due to late effects of the antineoplastic therapy. Cardiotoxicity is a major limiting factor of therapy with doxorubicin (DOXO), the most effective anthracycline, and is characterized by a dilated cardiomyopathy that can develop even years after treatment. Studies in animals have proposed the cardiac progenitor cells (CPCs) as the cellular target responsible for DOXO-induced cardiomyopathy but the relevance of these observations to clinical settings is unknown. In this study, the analysis of the DOXO-induced cardiomyopathic human hearts showed that the majority of human CPCs (hCPCs) was senescent. In isolated hCPCs, DOXO triggered DNA damage response leading to apoptosis early after exposure, and telomere shortening and senescence at later time interval. Functional properties of hCPCs, such as migration and differentiation, were also negatively affected. Importantly, the differentiated progeny of DOXO-treated hCPCs prematurely expressed the senescence marker p16INK4a. In conclusion, DOXO exposure severely affects the population of hCPCs and permanently impairs their function. Premature senescence of hCPCs and their progeny can be responsible for the decline in the regenerative capacity of the heart and may represent the cellular basis of DOXO-induced cardiomyopathy in humans.


Molecular Pain | 2010

Moving towards supraspinal TRPV1 receptors for chronic pain relief

Enza Palazzo; Livio Luongo; Vito de Novellis; Liberato Berrino; Francesco Rossi; Sabatino Maione

Transient receptor potential vanilloid type 1 (TRPV1) receptor is a non selective ligand-gated cation channel activated by capsaicin, heat, protons and endogenous lipids termed endovanilloids. As well as peripheral primary afferent neurons and dorsal root ganglia, TRPV1 receptor is also expressed in spinal and supraspinal structures such as those belonging to the endogenous antinociceptive descending pathway which is a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes periaqueductal grey (PAG) and rostral ventromedial medulla (RVM) whose activation leads to analgesia. Such an effect is associated with a glutamate increase and the activation of OFF and inhibition of ON cell population in the rostral ventromedial medulla (RVM). Activation of the antinociceptive descending pathway via TPRV1 receptor stimulation in the PAG may be a novel strategy for producing analgesia in chronic pain. This review will summarize the more recent insights into the role of TRPV1 receptor within the antinociceptive descending pathway and its possible exploitation as a target for new pain-killer agents in chronic pain conditions, with particular emphasis on the most untreatable pain state: neuropathic pain.


European Journal of Pharmacology | 2003

Group I metabotropic glutamate receptors modulate glutamate and γ-aminobutyric acid release in the periaqueductal grey of rats

Vito de Novellis; Ida Marabese; Enza Palazzo; Francesca Rossi; Liberato Berrino; Luigi F. Rodella; Rossella Bianchi; Francesco Rossi; Sabatino Maione

In this study, we investigated the effects of group I metabotropic glutamate (mglu) receptor ligands on glutamate and gamma-aminobutyric acid (GABA) extracellular concentrations at the periaqueductal grey level by using in vivo microdialysis. An agonist of group I mglu receptors, (S)-3,5-dihydroxyphenylglycine [(S)-3,5-DHPG, 1 and 2 mM], as well as a selective agonist of mglu(5) receptors, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 2 and 4 mM), both increased dialysate glutamate and GABA concentrations. 7-(Hydroxyimino)cyclopropa-[b]-chromen-1alpha-carboxylate ethyl ester (CPCCOEt, 1 mM), a selective mglu(1) receptor antagonist, and 2-methyl-6-(phenylethynyl)pyridine (MPEP, 0.5 mM), a selective mglu(5) receptor antagonist, perfused in combination with DHPG, antagonized the effect induced by DHPG on the extracellular glutamate and GABA concentrations. MPEP (0.5 mM), perfused in combination with CHPG, antagonized the increased glutamate and GABA extracellular levels induced by CHPG. MPEP (1 mM) decreased the extracellular concentrations of glutamate but did not modify the dialysate GABA concentrations. Moreover, as the intra-periaqueductal grey perfusion of (RS)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid [(RS)-CPP, 100 microM], a selective N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, did not change the extracellular concentrations of glutamate, this suggests that the MPEP-induced decrease in glutamate is not a consequence of NMDA receptor blockade. These data show that group I mglu receptors in the periaqueductal grey may modulate the release of glutamate and GABA in awake, freely moving rats. In particular, mglu(5), but not mglu(1), receptors seem to be functionally active on glutamate terminals.

Collaboration


Dive into the Liberato Berrino's collaboration.

Top Co-Authors

Avatar

Francesco Rossi

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Marilena Cipollaro

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Elena Piegari

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

A. Cascino

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Konrad Urbanek

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Maurizio Cotrufo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Antonella De Angelis

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Sabatino Maione

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Floriana Morgillo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Loreta Pia Ciuffreda

Seconda Università degli Studi di Napoli

View shared research outputs
Researchain Logo
Decentralizing Knowledge