Lidia Cucurull
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lidia Cucurull.
Bulletin of the American Meteorological Society | 2010
Suranjana Saha; Shrinivas Moorthi; Hua-Lu Pan; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; Robert Kistler; John S. Woollen; David Behringer; Haixia Liu; Diane Stokes; Robert Grumbine; George Gayno; Jun Wang; Yu-Tai Hou; Hui-Ya Chuang; Hann-Ming H. Juang; Joe Sela; Mark Iredell; Russ Treadon; Daryl T. Kleist; Paul Van Delst; Dennis Keyser; John Derber; Michael B. Ek; Jesse Meng; Helin Wei; Rongqian Yang; Stephen J. Lord
The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global oceans latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...
IEEE Transactions on Geoscience and Remote Sensing | 2014
William J. Blackwell; R. L. Bishop; Kerri Cahoy; Brian Cohen; Clayton Crail; Lidia Cucurull; Pratik Dave; Michael DiLiberto; Neal R. Erickson; Chad Fish; Shu-peng Ho; R. Vincent Leslie; Adam B. Milstein; I. Osaretin
We present a new high-fidelity method of calibrating a cross-track scanning microwave radiometer using Global Positioning System (GPS) radio occultation (GPSRO) measurements. The radiometer and GPSRO receiver periodically observe the same volume of atmosphere near the Earths limb, and these overlapping measurements are used to calibrate the radiometer. Performance analyses show that absolute calibration accuracy better than 0.25 K is achievable for temperature sounding channels in the 50-60-GHz band for a total-power radiometer using a weakly coupled noise diode for frequent calibration and proximal GPSRO measurements for infrequent (approximately daily) calibration. The method requires GPSRO penetration depth only down to the stratosphere, thus permitting the use of a relatively small GPS antenna. Furthermore, only coarse spacecraft angular knowledge (approximately one degree rms) is required for the technique, as more precise angular knowledge can be retrieved directly from the combined radiometer and GPSRO data, assuming that the radiometer angular sampling is uniform. These features make the technique particularly well suited for implementation on a low-cost CubeSat hosting both radiometer and GPSRO receiver systems on the same spacecraft. We describe a validation platform for this calibration method, the Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat, currently in development for the National Aeronautics and Space Administration (NASA) Earth Science Technology Office. MiRaTA will fly a multiband radiometer and the Compact TEC/Atmosphere GPS Sensor in 2015.
Bulletin of the American Meteorological Society | 2016
Sid Boukabara; Tong Zhu; Hendrik L. Tolman; Steve Lord; Steven J. Goodman; Robert Atlas; Mitch Goldberg; Thomas Auligne; Bradley Pierce; Lidia Cucurull; Milija Zupanski; Man Zhang; Isaac Moradi; Jason A. Otkin; David A. Santek; Brett T. Hoover; Zhaoxia Pu; Xiwu Zhan; Christopher R. Hain; Eugenia Kalnay; Daisuke Hotta; Scott Nolin; Eric Bayler; Avichal Mehra; Sean P. F. Casey; Daniel T. Lindsey; Louie Grasso; V. Krishna Kumar; Alfred M. Powell; Jianjun Xu
AbstractIn 2011, the National Oceanic and Atmospheric Administration (NOAA) began a cooperative initiative with the academic community to help address a vexing issue that has long been known as a disconnection between the operational and research realms for weather forecasting and data assimilation. The issue is the gap, more exotically referred to as the “valley of death,” between efforts within the broader research community and NOAA’s activities, which are heavily driven by operational constraints. With the stated goals of leveraging research community efforts to benefit NOAA’s mission and offering a path to operations for the latest research activities that support the NOAA mission, satellite data assimilation in particular, this initiative aims to enhance the linkage between NOAA’s operational systems and the research efforts. A critical component is the establishment of an efficient operations-to-research (O2R) environment on the Supercomputer for Satellite Simulations and Data Assimilation Studies ...
Archive | 2010
Suranjana Saha; Shrinivas Moorthi; Hua-Lu Pan; Xingren Wu; Jie Wang; Sudhir Nadiga; Patrick Tripp; Robert Kistler; John S. Woollen; David Behringer; Haixia Liu; Diane Stokes; Robert Grumbine; George Gayno; Jun Wang; Yu-Tai Hou; Hui-Ya Chuang; Hann-Ming Juang; Joe Sela; Mark Iredell; Russ Treadon; Daryl T. Kleist; Paul Van Delst; Dennis Keyser; John Derber; Michael B. Ek; Jesse Meng; Helin Wei; Rongqian Yang; Stephen J. Lord
The National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) was initially completed over the 31-year period from 1979 to 2009 and has been extended to March 2011. NCEP has created selected time series products at hourly temporal resolution by combining either 1) the analysis and one- through five-hour forecasts, or 2) the one- through six-hour forecasts, for each initialization time. Please note that NCEP only created time series for parameter/level combinations that they thought would be most useful to users. Time series that do not exist in this dataset can be created from the full 6-hourly products dataset at http://rda.ucar.edu/datasets/ds093.0/ [http://rda.ucar.edu/datasets/ds093.0/].\n\n For more information about CFSR in general, please see this page [http://rda.ucar.edu/#!pub/cfsr.html]. For data to extend CFSR beyond March 2011, please see the Climate Forecast System Version 2 (CFSv2) datasets.
Journal of Atmospheric and Oceanic Technology | 2016
Sid-Ahmed Boukabara; Isaac Moradi; Robert Atlas; Sean P. F. Casey; Lidia Cucurull; Ross N. Hoffman; Kayo Ide; V. Krishna Kumar; Ruifang Li; Zhenglong Li; Michiko Masutani; Narges Shahroudi; John S. Woollen; Yan Zhou
AbstractA modular extensible framework for conducting observing system simulation experiments (OSSEs) has been developed with the goals of 1) supporting decision-makers with quantitative assessments of proposed observing systems investments, 2) supporting readiness for new sensors, 3) enhancing collaboration across the community by making the most up-to-date OSSE components accessible, and 4) advancing the theory and practical application of OSSEs. This first implementation, the Community Global OSSE Package (CGOP), is for short- to medium-range global numerical weather prediction applications. The CGOP is based on a new mesoscale global nature run produced by NASA using the 7-km cubed sphere version of the Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model and the January 2015 operational version of the NOAA global data assimilation (DA) system. CGOP includes procedures to simulate the full suite of observing systems used operationally in the global DA system, inclu...
Earth’s Future | 2018
Bruce A. Wielicki; V. Ramaswamy; Mark Abbott; Thomas P. Ackerman; Robert Atlas; Guy P. Brasseur; Lori Bruhwiler; Antonio J. Busalacchi; James H. Butler; Christopher T. M. Clack; Roger M. Cooke; Lidia Cucurull; Sean M. Davis; Jason M. English; D. W. Fahey; Steven S. Fine; Jeffrey K. Lazo; Shunlin Liang; Norman G. Loeb; Eric Rignot; Brian J. Soden; Diane M. Stanitski; Graeme L. Stephens; Byron D. Tapley; Anne M. Thompson; Kevin E. Trenberth; Donald J. Wuebbles
Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and fresh water availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this paper. First, this paper proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: Melting Ice and Global Consequences; Clouds, Circulation and Climate Sensitivity; Carbon Feedbacks in the Climate System; Understanding and Predicting Weather and Climate Extremes; Water for the Food Baskets of the World; Regional Sea-Level Change and Coastal Impacts; and Near-term Climate Prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve societys needs.
Archive | 2011
Caterina Tassone; Marina Tsidulko; Yanqiu Zhu; Lidia Cucurull; Geoff Manikin; Jeff McQueen; Geoff DiMego
The height of the Planetary Boundary Layer (PBL) is an important quantity for certain applications such as dispersion modeling. A dedicated two-dimensional PBL height analysis has been developed as an additional component of NCEP’s Real-Time Mesoscale Analysis. As for other meteorological analysis applications, the quality of the output is dependent on the quality of the input, including the observation. Here we assess the quality and potential for use in the PBL height analysis of a series of candidate observations, including Radiosonde Observations (RAOBS), Aircraft Communications Addressing and Reporting System (ACARS), Cooperative Agency Profilers (CAP), COSMIC satellite Radio Occultation and NWS Next-Rad radar reflectivities. The quality is assessed both by physical plausibility of the measurements and by comparison of the observations and the resulting analysis with independent observations not used in the analysis.
Archive | 2010
Suranjana Saha; Shrinivas Moorthi; Hua-Lu Pan; Xingren Wu; Jie Wang; Sudhir Nadiga; Patrick Tripp; Robert Kistler; John S. Woollen; David Behringer; Haixia Liu; Diane Stokes; Robert Grumbine; George Gayno; Jun Wang; Yu-Tai Hou; Hui-Ya Chuang; Hann-Ming Juang; Joe Sela; Mark Iredell; Russ Treadon; Daryl T. Kleist; Paul Van Delst; Dennis Keyser; John Derber; Michael B. Ek; Jesse Meng; Helin Wei; Rongqian Yang; Stephen J. Lord
Archive | 2010
Suranjana Saha; Shrinivas Moorthi; Hua-Lu Pan; Xingren Wu; Jiande Wang; Sudhir Nadiga; Patrick Tripp; Robert Kistler; John S. Woollen; David Behringer; Haixia Liu; Diane Stokes; Robert Grumbine; George Gayno; Jun Wang; Yu-Tai Hou; Hui-Ya Chuang; Hann-Ming H. Juang; Joe Sela; Mark Iredell; Russ Treadon; Daryl T. Kleist; Paul Van Delst; Dennis Keyser; John Derber; Michael B. Ek; Jesse Meng; Helin Wei; Rongqian Yang; Stephen J. Lord
Atmospheric Science Letters | 2012
Lidia Cucurull