Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lien Lam is active.

Publication


Featured researches published by Lien Lam.


The New England Journal of Medicine | 2012

Truncations of Titin Causing Dilated Cardiomyopathy

Daniel S. Herman; Lien Lam; Libin Wang; Polakit Teekakirikul; Danos C. Christodoulou; Lauren Conner; Steven R. DePalma; Barbara McDonough; Elizabeth Sparks; Debbie Lin Teodorescu; Allison L. Cirino; Nicholas R. Banner; Dudley J. Pennell; Sharon Graw; Marco Merlo; Gianfranco Sinagra; J. Martijn Bos; Michael J. Ackerman; Richard N. Mitchell; Charles E. Murry; Neal K. Lakdawala; Carolyn Y. Ho; Stuart A. Cook; Luisa Mestroni; Christine E. Seidman

BACKGROUND Dilated cardiomyopathy and hypertrophic cardiomyopathy arise from mutations in many genes. TTN, the gene encoding the sarcomere protein titin, has been insufficiently analyzed for cardiomyopathy mutations because of its enormous size. METHODS We analyzed TTN in 312 subjects with dilated cardiomyopathy, 231 subjects with hypertrophic cardiomyopathy, and 249 controls by using next-generation or dideoxy sequencing. We evaluated deleterious variants for cosegregation in families and assessed clinical characteristics. RESULTS We identified 72 unique mutations (25 nonsense, 23 frameshift, 23 splicing, and 1 large tandem insertion) that altered full-length titin. Among subjects studied by means of next-generation sequencing, the frequency of TTN mutations was significantly higher among subjects with dilated cardiomyopathy (54 of 203 [27%]) than among subjects with hypertrophic cardiomyopathy (3 of 231 [1%], P=3×10(-16)) or controls (7 of 249 [3%], P=9×10(-14)). TTN mutations cosegregated with dilated cardiomyopathy in families (combined lod score, 11.1) with high (>95%) observed penetrance after the age of 40 years. Mutations associated with dilated cardiomyopathy were overrepresented in the titin A-band but were absent from the Z-disk and M-band regions of titin (P≤0.01 for all comparisons). Overall, the rates of cardiac outcomes were similar in subjects with and those without TTN mutations, but adverse events occurred earlier in male mutation carriers than in female carriers (P=4×10(-5)). CONCLUSIONS TTN truncating mutations are a common cause of dilated cardiomyopathy, occurring in approximately 25% of familial cases of idiopathic dilated cardiomyopathy and in 18% of sporadic cases. Incorporation of sequencing approaches that detect TTN truncations into genetic testing for dilated cardiomyopathy should substantially increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy. Defining the functional effects of TTN truncating mutations should improve our understanding of the pathophysiology of dilated cardiomyopathy. (Funded by the Howard Hughes Medical Institute and others.).


The New England Journal of Medicine | 2016

A Prospective Study of Sudden Cardiac Death among Children and Young Adults

Richard D. Bagnall; Robert G. Weintraub; Jodie Ingles; Johan Duflou; Laura Yeates; Lien Lam; Andrew M. Davis; T. Thompson; Vanessa Connell; Jennie Wallace; Charles Naylor; Jackie Crawford; Donald R. Love; Lavinia Hallam; Jodi White; Christopher Lawrence; Matthew Lynch; Natalie Morgan; Paul A. James; Desirée du Sart; Rajesh Puranik; Neil E. I. Langlois; Jitendra K. Vohra; Ingrid Winship; John Atherton; Julie McGaughran; Jonathan R. Skinner; Christopher Semsarian

BACKGROUND Sudden cardiac death among children and young adults is a devastating event. We performed a prospective, population-based, clinical and genetic study of sudden cardiac death among children and young adults. METHODS We prospectively collected clinical, demographic, and autopsy information on all cases of sudden cardiac death among children and young adults 1 to 35 years of age in Australia and New Zealand from 2010 through 2012. In cases that had no cause identified after a comprehensive autopsy that included toxicologic and histologic studies (unexplained sudden cardiac death), at least 59 cardiac genes were analyzed for a clinically relevant cardiac gene mutation. RESULTS A total of 490 cases of sudden cardiac death were identified. The annual incidence was 1.3 cases per 100,000 persons 1 to 35 years of age; 72% of the cases involved boys or young men. Persons 31 to 35 years of age had the highest incidence of sudden cardiac death (3.2 cases per 100,000 persons per year), and persons 16 to 20 years of age had the highest incidence of unexplained sudden cardiac death (0.8 cases per 100,000 persons per year). The most common explained causes of sudden cardiac death were coronary artery disease (24% of cases) and inherited cardiomyopathies (16% of cases). Unexplained sudden cardiac death (40% of cases) was the predominant finding among persons in all age groups, except for those 31 to 35 years of age, for whom coronary artery disease was the most common finding. Younger age and death at night were independently associated with unexplained sudden cardiac death as compared with explained sudden cardiac death. A clinically relevant cardiac gene mutation was identified in 31 of 113 cases (27%) of unexplained sudden cardiac death in which genetic testing was performed. During follow-up, a clinical diagnosis of an inherited cardiovascular disease was identified in 13% of the families in which an unexplained sudden cardiac death occurred. CONCLUSIONS The addition of genetic testing to autopsy investigation substantially increased the identification of a possible cause of sudden cardiac death among children and young adults. (Funded by the National Health and Medical Research Council of Australia and others.).


Circulation | 2008

Severe Heart Failure and Early Mortality in a Double-Mutation Mouse Model of Familial Hypertrophic Cardiomyopathy

Tatiana Tsoutsman; Matthew Kelly; Dominic C. H. Ng; Ju-En Tan; Emily Tu; Lien Lam; Marie A. Bogoyevitch; Christine E. Seidman; Jonathan G. Seidman; Christopher Semsarian

Background— Familial hypertrophic cardiomyopathy (FHC) is characterized by genetic and clinical heterogeneity. Five percent of FHC families have 2 FHC-causing mutations, which results in earlier disease onset, increased cardiac dysfunction, and a higher incidence of sudden death events. These observations suggest a relationship between the number of gene mutations and phenotype severity in FHC. Methods and Results— We sought to develop, characterize, and investigate the pathogenic mechanisms in a double-mutant murine model of FHC. This model (designated TnI-203/MHC-403) was generated by crossbreeding mice with the Gly203Ser cardiac troponin I (TnI-203) and Arg403Gln α-myosin heavy chain (MHC-403) FHC-causing mutations. The mortality rate in TnI-203/MHC-403 mice was 100% by age 21 days. At age 14 days, TnI-203/MHC-403 mice developed a significantly increased ratio of heart weight to body weight, marked interstitial myocardial fibrosis, and increased expression of atrial natriuretic factor and brain natriuretic peptide compared with nontransgenic, TnI-203, and MHC-403 littermates. By age 16 to 18 days, TnI-203/MHC-403 mice rapidly developed a severe dilated cardiomyopathy and heart failure, with inducibility of ventricular arrhythmias, which led to death by 21 days. Downregulation of mRNA levels of key regulators of Ca2+ homeostasis in TnI-203/MHC-403 mice was observed. Increased levels of phosphorylated STAT3 were observed in TnI-203/MHC-403 mice and corresponded with the onset of disease, which suggests a possible cardioprotective response. Conclusions— TnI-203/MHC-403 double-mutant mice develop a severe cardiac phenotype characterized by heart failure and early death. The presence of 2 disease-causing mutations may predispose individuals to a greater risk of developing severe heart failure than human FHC caused by a single gene mutation.


Annals of Neurology | 2016

Exome-based analysis of cardiac arrhythmia, respiratory control, and epilepsy genes in sudden unexpected death in epilepsy

Richard D. Bagnall; Douglas E. Crompton; Slavé Petrovski; Lien Lam; Carina Cutmore; Sarah I. Garry; Lynette G. Sadleir; Leanne M. Dibbens; Anita Cairns; Sara Kivity; Zaid Afawi; Brigid M. Regan; Johan Duflou; Samuel F. Berkovic; Ingrid E. Scheffer; Christopher Semsarian

The leading cause of epilepsy‐related premature mortality is sudden unexpected death in epilepsy (SUDEP). The cause of SUDEP remains unknown. To search for genetic risk factors in SUDEP cases, we performed an exome‐based analysis of rare variants.


Clinical and Experimental Pharmacology and Physiology | 2006

GENES, CALCIUM AND MODIFYING FACTORS IN HYPERTROPHIC CARDIOMYOPATHY

Tatiana Tsoutsman; Lien Lam; Christopher Semsarian

1 Familial hypertrophic cardiomyopathy (FHC) is a primary disorder of the myocardium characterized by remarkable diversity in clinical presentations, ranging from no symptoms to severe heart failure and sudden cardiac death. 2 Over the past 15 years, at least 11 genes have been identified, defects of which cause FHC. Most of these genes encode proteins that comprise the basic contractile unit of the heart (i.e. the sarcomere). 3 Genetic studies are now beginning to have a major impact on the diagnosis in FHC, as well as in guiding treatment and preventative strategies. Although much is known about which genes cause disease, relatively little is known about the molecular steps leading from the gene defect to the clinical phenotype and what factors modify the expression of the mutant genes. 4 Concurrent studies in cell culture and animal models of FHC are now beginning to shed light on the signalling pathways involved in FHC and the role of both environmental and genetic modifying factors. Calcium dysregulation appears to be important in the pathogenesis of FHC. 5 Understanding these basic molecular mechanisms will ultimately improve our knowledge of the basic biology of heart muscle function and will therefore provide new avenues for diagnosis and treatment not only for FHC, but also for a range of human cardiovascular diseases.


Journal of Molecular and Cellular Cardiology | 2010

Differential protein expression profiling of myocardial tissue in a mouse model of hypertrophic cardiomyopathy

Lien Lam; Tatiana Tsoutsman; Jonathan W. Arthur; Christopher Semsarian

Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in genes encoding sarcomere proteins. The mechanisms involved in the development of cardiac hypertrophy and heart failure remain poorly understood. Global proteomic profiling was used to study the cardiac proteome of mice predisposed to developing HCM. Hearts from three groups of mice (n=3 hearts per group) were studied: non-transgenic (NTG) and cardiac-specific transgenic models over-expressing either the normal (TnI(WT)) or a mutant cardiac troponin I gene (Gly203Ser; TnI(G203S)). Two-dimensional gel electrophoresis (2-DE) coupled with tandem mass spectrometry was used to identify proteins. Image analysis was performed using Progenesis SameSpots. A total of 34 proteins with at least a twofold change in the TnI(G203S) mouse model were identified. Alterations were detected in components involved in energy production, Ca(2+) handling, and cardiomyocyte structure. Expression level changes in cytoskeletal and contractile proteins were well represented in the study, including the intermediate filament protein desmin, which was further investigated in two additional physiological and pathological settings, i.e., exercise treatment, and severe heart failure in a novel double-mutant TnI-203/MHC-403 model of HCM. This study highlights the potential role of tissue proteomic profiling for mapping proteins, which may be critical in cardiac dysfunction and progression to heart failure in HCM.


Heart Rhythm | 2016

A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia

Belinda Gray; Richard D. Bagnall; Lien Lam; Jodie Ingles; Christian Turner; Eric Haan; Andrew M. Davis; Pei Chi Yang; Colleen E. Clancy; Raymond W. Sy; Christopher Semsarian

BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal inherited arrhythmia syndrome characterized by adrenergically stimulated ventricular tachycardia. Mutations in the cardiac ryanodine receptor gene (RYR2) cause an autosomal dominant form of CPVT, while mutations in the cardiac calsequestrin 2 gene (CASQ2) cause an autosomal recessive form. OBJECTIVE The aim of this study was to clinically and genetically evaluate a large family with severe autosomal dominant CPVT. METHODS Clinical evaluation of family members was performed, including detailed history, physical examination, electrocardiogram, exercise stress test, and autopsy review of decedents. We performed genome-wide linkage analysis in 12 family members and exome sequencing in 2 affected family members. In silico models of mouse and rabbit myocyte electrophysiology were used to predict potential disease mechanisms. RESULTS Severe CPVT with dominant inheritance in 6 members was diagnosed in a large family with 2 sudden deaths, 2 resuscitated cardiac arrests, and multiple appropriate implantable cardioverter-defibrillator shocks. A comprehensive analysis of cardiac arrhythmia genes did not reveal a pathogenic variant. Exome sequencing identified a novel heterozygous missense variant in CASQ2 (Lys180Arg) affecting a highly conserved residue, which cosegregated with disease and was absent in unaffected family members. Genome-wide linkage analysis confirmed a single linkage peak at the CASQ2 locus (logarithm of odds ratio score 3.01; θ = 0). Computer simulations predicted that haploinsufficiency was unlikely to cause the severe CPVT phenotype and suggested a dominant negative mechanism. CONCLUSION We show for the first time that a variant in CASQ2 causes autosomal dominant CPVT. Genetic testing in dominant CPVT should include screening for heterozygous CASQ2 variants.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing

Kaoru Ito; Parth Patel; Joshua M. Gorham; Barbara McDonough; Steven R. DePalma; Emily E. Adler; Lien Lam; Calum A. MacRae; Syed M. Mohiuddin; Diane Fatkin; Christine E. Seidman; Jonathan G. Seidman

Significance Sequence variants that create or eliminate splice sites are often clinically classified as variants of unknown significance (VUS) due to imperfect understanding of RNA splice signals and cumbersome functional assays. In autosomal dominant disorders caused by haploinsufficiency, variants that alter normal splicing of one allele are pathogenic. We developed enhanced computational tools to prioritize potential splice-altering VUS and used a minigene assay to functionally confirm splice-altering sequence variants. In studying all reported variants across LMNA and MYBPC3, two known heart disease genes, we demonstrate that ∼5% of VUS from affected patients alter splicing and are undetected disease-causing variants. This strategy improves clinical detection of pathogenic variants and should be broadly relevant to other human disorders that are caused by haploinsufficiency. Genetic variants that cause haploinsufficiency account for many autosomal dominant (AD) disorders. Gene-based diagnosis classifies variants that alter canonical splice signals as pathogenic, but due to imperfect understanding of RNA splice signals other variants that may create or eliminate splice sites are often clinically classified as variants of unknown significance (VUS). To improve recognition of pathogenic splice-altering variants in AD disorders, we used computational tools to prioritize VUS and developed a cell-based minigene splicing assay to confirm aberrant splicing. Using this two-step procedure we evaluated all rare variants in two AD cardiomyopathy genes, lamin A/C (LMNA) and myosin binding protein C (MYBPC3). We demonstrate that 13 LMNA and 35 MYBPC3 variants identified in cardiomyopathy patients alter RNA splicing, representing a 50% increase in the numbers of established damaging splice variants in these genes. Over half of these variants are annotated as VUS by clinical diagnostic laboratories. Familial analyses of one variant, a synonymous LMNA VUS, demonstrated segregation with cardiomyopathy affection status and altered cardiac LMNA splicing. Application of this strategy should improve diagnostic accuracy and variant classification in other haploinsufficient AD disorders.


Circulation-cardiovascular Genetics | 2017

Multiple Gene Variants in Hypertrophic Cardiomyopathy in the Era of Next-Generation SequencingCLINICAL PERSPECTIVE

Charlotte Burns; Richard D. Bagnall; Lien Lam; Christopher Semsarian; Jodie Ingles

Background— Multiple likely pathogenic/pathogenic (LP/P; ≥2) variants in patients with hypertrophic cardiomyopathy were described 10 years ago with a prevalence of 5%. We sought to re-examine the significance of multiple rare variants in patients with hypertrophic cardiomyopathy in the setting of comprehensive and targeted panels. Methods and Results— Of 758 hypertrophic cardiomyopathy probands, we included 382 with ≥45 cardiomyopathy genes screened. There were 224 (59%) with ≥1 rare variant (allele frequency ⩽0.02%). Variants were analyzed using varying sized gene panels to represent comprehensive or targeted testing. Based on a 45-gene panel, 127 (33%) had a LP/P variant, 139 (36%) had variants of uncertain significance, and 66 (17%) had multiple rare variants. A targeted 8-gene panel yielded 125 (32%) LP/P variants, 52 (14%) variants of uncertain significance, and 14 (4%) had multiple rare variants. No proband had 2 LP/P variants. Including affected family members (total n=412), cluster-adjusted analyses identified a phenotype effect, with younger age (odds ratio, 0.95; 95% confidence interval, 0.92–0.98; P=0.004) and family history of sudden cardiac death (odds ratio, 3.5; 95% confidence interval, 1.3–9.9; P=0.02) significantly more likely in multiple versus single variant patients when considering an 8-gene panel but not larger panels. Those with multiple variants had worse event-free survival from all-cause death, cardiac transplantation, and cardiac arrest (log-rank P=0.008). Conclusions— No proband had multiple LP/P variants in contrast to previous reports. However, multiple rare variants regardless of classification were seen in 4% and contributed to earlier disease onset and cardiac events. Our findings support a cumulative variant hypothesis in hypertrophic cardiomyopathy.


Genetics in Medicine | 2018

A gene-centric strategy for identifying disease-causing rare variants in dilated cardiomyopathy

Claire Horvat; Renee Johnson; Lien Lam; Jacob Munro; Francesco Mazzarotto; Angharad M. Roberts; Daniel S. Herman; Michael Parfenov; Alireza Haghighi; Barbara McDonough; Steven R. DePalma; Anne Keogh; P. Macdonald; Christopher S. Hayward; Amy E. Roberts; Paul J.R. Barton; Leanne E. Felkin; Eleni Giannoulatou; Stuart A. Cook; Jonathan G. Seidman; Christine E. Seidman; Diane Fatkin

PurposeWe evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM).MethodsCardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics.ResultsA majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one “driver” pathogenic variant that cosegregated with disease.ConclusionRare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.

Collaboration


Dive into the Lien Lam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

John Atherton

Royal Brisbane and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Rajesh Puranik

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge