Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatiana Tsoutsman is active.

Publication


Featured researches published by Tatiana Tsoutsman.


Journal of Immunology | 2003

Genetic Control of NKT Cell Numbers Maps to Major Diabetes and Lupus Loci

Luis M. Esteban; Tatiana Tsoutsman; Margaret A. Jordan; Daniel Roach; Lynn D. Poulton; Andrew G. Brooks; Olga V. Naidenko; Stephane Sidobre; Dale I. Godfrey; Alan G. Baxter

Natural killer T cells are an immunoregulatory population of lymphocytes that plays a critical role in controlling the adaptive immune system and contributes to the regulation of autoimmune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the nonobese diabetic (NOD) mouse strain, a well-validated model of type 1 diabetes and systemic lupus erythematosus. In this study, we report the results of a genetic linkage analysis of the genes controlling NKT cell numbers in a first backcross (BC1) from C57BL/6 to NOD.Nkrp1b mice. The numbers of thymic NKT cells of 320 BC1 mice were determined by fluorescence-activated cell analysis using anti-TCR Ab and CD1/α-galactosylceramide tetramer. Tail DNA of 138 female BC1 mice was analyzed for PCR product length polymorphisms at 181 simple sequence repeats, providing greater than 90% coverage of the autosomal genome with an average marker separation of 8 cM. Two loci exhibiting significant linkage to NKT cell numbers were identified; the most significant (Nkt1) was on distal chromosome 1, in the same region as the NOD mouse lupus susceptibility gene Babs2/Bana3. The second most significant locus (Nkt2) mapped to the same region as Idd13, a NOD-derived diabetes susceptibility gene on chromosome 2.


Circulation | 2008

Severe Heart Failure and Early Mortality in a Double-Mutation Mouse Model of Familial Hypertrophic Cardiomyopathy

Tatiana Tsoutsman; Matthew Kelly; Dominic C. H. Ng; Ju-En Tan; Emily Tu; Lien Lam; Marie A. Bogoyevitch; Christine E. Seidman; Jonathan G. Seidman; Christopher Semsarian

Background— Familial hypertrophic cardiomyopathy (FHC) is characterized by genetic and clinical heterogeneity. Five percent of FHC families have 2 FHC-causing mutations, which results in earlier disease onset, increased cardiac dysfunction, and a higher incidence of sudden death events. These observations suggest a relationship between the number of gene mutations and phenotype severity in FHC. Methods and Results— We sought to develop, characterize, and investigate the pathogenic mechanisms in a double-mutant murine model of FHC. This model (designated TnI-203/MHC-403) was generated by crossbreeding mice with the Gly203Ser cardiac troponin I (TnI-203) and Arg403Gln α-myosin heavy chain (MHC-403) FHC-causing mutations. The mortality rate in TnI-203/MHC-403 mice was 100% by age 21 days. At age 14 days, TnI-203/MHC-403 mice developed a significantly increased ratio of heart weight to body weight, marked interstitial myocardial fibrosis, and increased expression of atrial natriuretic factor and brain natriuretic peptide compared with nontransgenic, TnI-203, and MHC-403 littermates. By age 16 to 18 days, TnI-203/MHC-403 mice rapidly developed a severe dilated cardiomyopathy and heart failure, with inducibility of ventricular arrhythmias, which led to death by 21 days. Downregulation of mRNA levels of key regulators of Ca2+ homeostasis in TnI-203/MHC-403 mice was observed. Increased levels of phosphorylated STAT3 were observed in TnI-203/MHC-403 mice and corresponded with the onset of disease, which suggests a possible cardioprotective response. Conclusions— TnI-203/MHC-403 double-mutant mice develop a severe cardiac phenotype characterized by heart failure and early death. The presence of 2 disease-causing mutations may predispose individuals to a greater risk of developing severe heart failure than human FHC caused by a single gene mutation.


Nature Communications | 2011

Respiratory distress and perinatal lethality in Nedd4-2-deficient mice

Natasha A. Boase; Grigori Y. Rychkov; Scott L. Townley; Anuwat Dinudom; Eleanora Candi; Anne K. Voss; Tatiana Tsoutsman; Christopher Semsarian; Gerry Melino; Frank Koentgen; David I. Cook; Sharad Kumar

The epithelial sodium channel (ENaC) is essential for sodium homoeostasis in many epithelia. ENaC activity is required for lung fluid clearance in newborn animals and for maintenance of blood volume and blood pressure in adults. In vitro studies show that the ubiquitin ligase Nedd4-2 ubiquitinates ENaC to regulate its cell surface expression. Here we show that knockout of Nedd4-2 in mice leads to increased ENaC expression and activity in embryonic lung. This increased ENaC activity is the likely reason for premature fetal lung fluid clearance in Nedd4-2−/− animals, resulting in a failure to inflate lungs and perinatal lethality. A small percentage of Nedd4-2−/− animals survive up to 22 days, and these animals also show increased ENaC expression and develop lethal sterile inflammation of the lung. Thus, we provide critical in vivo evidence that Nedd4-2 is essential for correct regulation of ENaC expression, fetal and postnatal lung function and animal survival.


PLOS ONE | 2012

Global MicroRNA Profiling of the Mouse Ventricles during Development of Severe Hypertrophic Cardiomyopathy and Heart Failure

Richard D. Bagnall; Tatiana Tsoutsman; Rhian Shephard; William Ritchie; Christopher Semsarian

MicroRNAs (miRNAs) regulate post-transcriptional gene expression during development and disease. We have determined the miRNA expression levels of early- and end-stage hypertrophic cardiomyopathy (HCM) in a severe, transgenic mouse model of the disease. Five miRNAs were differentially expressed at an early stage of HCM development. Time-course analysis revealed that decreased expression of miR-1 and miR-133a commences at a pre-disease stage, and precedes upregulation of target genes causal of cardiac hypertrophy and extracellular matrix remodelling, suggesting a role for miR-1 and miR-133a in early disease development. At end-stage HCM, 16 miRNA are dysregulated to form an expression profile resembling that of other forms of cardiac hypertrophy, suggesting common responses. Analysis of the mRNA transcriptome revealed that miRNAs potentially target 15.7% upregulated and 4.8% downregulated mRNAs at end-stage HCM, and regulate mRNAs associated with cardiac hypertrophy and electrophysiology, calcium signalling, fibrosis, and the TGF-β signalling pathway. Collectively, these results define the miRNA expression signatures during development and progression of severe HCM and highlight critical miRNA regulated gene networks that are involved in disease pathogenesis.


Cell Research | 2003

Hypertrophic cardiomyopathy: from gene defect to clinical disease

Man-Wei Chung; Tatiana Tsoutsman; Christopher Semsarian

ABSTRACTMajor advances have been made over the last decade in our understanding of the molecular basis of several cardiac conditions. Hypertrophic cardiomyopathy (HCM) was the first cardiac disorder in which a genetic basis was identified and as such, has acted as a paradigm for the study of an inherited cardiac disorder. HCM can result in clinical symptoms ranging from no symptoms to severe heart failure and premature sudden death. HCM is the commonest cause of sudden death in those aged less than 35 years, including competitive athletes. At least ten genes have now been identified, defects in which cause HCM. All of these genes encode proteins which comprise the basic contractile unit of the heart, i.e. the sarcomere. While much is now known about which genes cause disease and the various clinical presentations, very little is known about how these gene defects cause disease, and what factors modify the expression of the mutant genes. Studies in both cell culture and animal models of HCM are now beginning to shed light on the signalling pathways involved in HCM, and the role of both environmental and genetic modifying factors. Understanding these mechanisms will ultimately improve our knowledge of the basic biology of heart muscle function, and will therefore provide new avenues for treating cardiovascular disease in man.


American Journal of Physiology-cell Physiology | 2009

Adverse effects of high glucose and free fatty acid on cardiomyocytes are mediated by connective tissue growth factor

Xiaoyu Wang; Terri J. Allen; Tatiana Tsoutsman; Christopher Semsarian; Stephen M. Twigg

Diabetic cardiomyopathy is characterized by interstitial fibrosis and cardiomyocyte hypertrophy and apoptosis. Also known as CCN2, connective tissue growth factor (CTGF) is implicated in the fibrosis; however, whether it contributes to cardiomyocytes changes and adverse effects of high glucose and lipids on these cells remains unknown. Hearts from streptozotocin-induced diabetic rats had elevated CTGF and changes of pathological myocardial hypertrophy, fibrosis, and cardiomyocyte apoptosis. Rat H9c2 cardiomyocytes were then treated with recombinant human (rh)CTGF, high glucose, or the saturated free fatty acid palmitate. Each reagent induced cell hypertrophy, as indicated by the ratio of total protein to cell number, cell size, and gene expression of cardiac hypertrophy marker genes atrial natriuretic peptide (ANP), and alpha-skeletal actin. Each treatment also caused apoptosis measured by increased caspase3/7 activity, apoptotic cells by transferase-mediated dUTP nick end labeling (TUNEL) assay, and lower viable cell number. Further studies showed CTGF mRNA was rapidly induced by high glucose and palmitate in H9c2 cells and in mouse neonatal cardiomyocyte primary cultures. small interfering RNA against CTGF blocked the high glucose and palmitate induction of hypertrophy and apoptosis. In addition, these CTGF effects were through the tyrosine kinase A (TrkA) receptor with tyrosine kinase activity, which has previously been implicated in CTGF signaling: TrkA was phosphorylated by CTGF, and a specific TrkA blocker abrogated CTGF-induced effects on hypertrophy and apoptosis. For the first time in any system, fatty acid is newly identified as a regulator of CTGF, and this work implicates autocrine CTGF as a mediator of adverse effects of high glucose and fatty acids in cardiomyocytes.


Clinical and Experimental Pharmacology and Physiology | 2006

GENES, CALCIUM AND MODIFYING FACTORS IN HYPERTROPHIC CARDIOMYOPATHY

Tatiana Tsoutsman; Lien Lam; Christopher Semsarian

1 Familial hypertrophic cardiomyopathy (FHC) is a primary disorder of the myocardium characterized by remarkable diversity in clinical presentations, ranging from no symptoms to severe heart failure and sudden cardiac death. 2 Over the past 15 years, at least 11 genes have been identified, defects of which cause FHC. Most of these genes encode proteins that comprise the basic contractile unit of the heart (i.e. the sarcomere). 3 Genetic studies are now beginning to have a major impact on the diagnosis in FHC, as well as in guiding treatment and preventative strategies. Although much is known about which genes cause disease, relatively little is known about the molecular steps leading from the gene defect to the clinical phenotype and what factors modify the expression of the mutant genes. 4 Concurrent studies in cell culture and animal models of FHC are now beginning to shed light on the signalling pathways involved in FHC and the role of both environmental and genetic modifying factors. Calcium dysregulation appears to be important in the pathogenesis of FHC. 5 Understanding these basic molecular mechanisms will ultimately improve our knowledge of the basic biology of heart muscle function and will therefore provide new avenues for diagnosis and treatment not only for FHC, but also for a range of human cardiovascular diseases.


Clinical and Experimental Pharmacology and Physiology | 2008

IMPACT OF MULTIPLE GENE MUTATIONS IN DETERMINING THE SEVERITY OF CARDIOMYOPATHY AND HEART FAILURE

Tatiana Tsoutsman; Richard D. Bagnall; Christopher Semsarian

1 Familial hypertrophic cardiomyopathy (FHC) is a primary cardiac disorder characterized by myocardial hypertrophy that demonstrates substantial diversity in both genetic causes and clinical manifestations. 2 Clinical heterogeneity can be explained by the causative gene (at least 13 have been identified to date), the position of the amino acid residue affected by a mutation within the protein (over 450 mutations have been reported to date) and modifying genetic and environmental factors. 3 Multiple mutations are found in up to 5% of human FHC cases, who typically present with a more severe phenotype compared with single‐mutation carriers (i.e. earlier onset of disease, greater left ventricular hypertrophy and a higher incidence of sudden cardiac death events). 4 Multiple mutations usually involve MYH7, MYBPC3 and, to a lesser extent, TNNI2, reflecting the higher contribution of mutations in these genes to FHC. 5 Multiple‐mutation mouse models appear to mimic the human multiple‐mutation phenotype and, thus, will help improve our understanding of disease pathogenesis. The models provide a tool for future studies of disease mechanisms and signalling pathways in FHC and its sequelae (i.e. heart failure and sudden death), thereby allowing identification of novel targets for potential therapies and disease prevention strategies.


Journal of Molecular and Cellular Cardiology | 2013

CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure

Tatiana Tsoutsman; Xiaoyu Wang; Kendra Garchow; Bruce L. Riser; Stephen M. Twigg; Christopher Semsarian

Hypertrophic cardiomyopathy (HCM) is the most common inherited primary myocardial disorder. HCM is characterized by interstitial fibrosis and excessive accumulation of extracellular matrix (ECM) proteins. Fibrosis in HCM has been associated with impaired cardiac function and heart failure, and has been considered a key substrate for ventricular arrhythmias and sudden death. The molecular triggers underpinning ECM production are not well established. We have previously developed a double-mutant mouse model of HCM that recapitulates the phenotype seen in humans with multiple mutations, including earlier onset of the disease, progression to a dilated phenotype, severe heart failure and premature mortality. The present study investigated the expression of ECM-encoding genes in severe HCM and heart failure. Significant upregulation of structural Fn1, regulatory Mmp14, Timp1, Serpin3A, SerpinE1, SerpineE2, Tgfβ1, and Tgfβ2; and matricellular Ccn2, Postn, Spp1, Thbs1, Thbs4, and Tnc was evident from the early, pre-phenotype stage. Non-myocytes expressed ECM genes at higher levels than cardiomyocytes in normal and diseased hearts. Synchronous increase of secreted CCN2 and TIMP1 plasma levels and decrease of MMP3 levels were observed in end-stage disease. CCN2 protein expression was increased from early disease in double-mutant hearts and played an important role in ECM responses. It was a powerful modulator of ECM regulatory (Timp1 and SerpinE1) and matricellular protein-encoding (Spp1, Thbs1, Thbs4 and Tnc) gene expression in cardiomyocytes when added exogenously in vitro. Modulation of CCN2 (CTGF, connective tissue growth factor) and associated early ECM changes may represent a new therapeutic target in the treatment and prevention of heart failure in HCM.


Journal of Biological Chemistry | 2011

Opposing Actions of Extracellular Signal-regulated Kinase (ERK) and Signal Transducer and Activator of Transcription 3 (STAT3) in Regulating Microtubule Stabilization during Cardiac Hypertrophy

Dominic C. H. Ng; Ivan Ng; Yvonne Y C Yeap; Bahareh Badrian; Tatiana Tsoutsman; Julie R. McMullen; Christopher Semsarian; Marie A. Bogoyevitch

Excessive proliferation and stabilization of the microtubule (MT) array in cardiac myocytes can accompany pathological cardiac hypertrophy, but the molecular control of these changes remains poorly characterized. In this study, we examined MT stabilization in two independent murine models of heart failure and revealed increases in the levels of post-translationally modified stable MTs, which were closely associated with STAT3 activation. To explore the molecular signaling events contributing to control of the cardiac MT network, we stimulated cardiac myocytes with an α-adrenergic agonist phenylephrine (PE), and observed increased tubulin content without changes in detyrosinated (glu-tubulin) stable MTs. In contrast, the hypertrophic interleukin-6 (IL6) family cytokines increased both the glu-tubulin content and glu-MT density. When we examined a role for ERK in regulating cardiac MTs, we showed that the MEK/ERK-inhibitor U0126 increased glu-MT density in either control cardiac myocytes or following exposure to hypertrophic agents. Conversely, expression of an activated MEK1 mutant reduced glu-tubulin levels. Thus, ERK signaling antagonizes stabilization of the cardiac MT array. In contrast, inhibiting either JAK2 with AG490, or STAT3 signaling with Stattic or siRNA knockdown, blocked cytokine-stimulated increases in glu-MT density. Furthermore, the expression of a constitutively active STAT3 mutant triggered increased glu-MT density in the absence of hypertrophic stimulation. Thus, STAT3 activation contributes substantially to cytokine-stimulated glu-MT changes. Taken together, our results highlight the opposing actions of STAT3 and ERK pathways in the regulation of MT changes associated with cardiac myocyte hypertrophy.

Collaboration


Dive into the Tatiana Tsoutsman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena M. Viola

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Livia C. Hool

Victor Chang Cardiac Research Institute

View shared research outputs
Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victoria P.A. Johnstone

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge