Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lien Van Hoecke is active.

Publication


Featured researches published by Lien Van Hoecke.


Advanced Healthcare Materials | 2017

Arginine-Rich Peptide-Based mRNA Nanocomplexes Efficiently Instigate Cytotoxic T Cell Immunity Dependent on the Amphipathic Organization of the Peptide.

Vimal Kumar Udhayakumar; Ans De Beuckelaer; Joanne McCaffrey; Cian M. McCrudden; Jonathan L. Kirschman; Daryll Vanover; Lien Van Hoecke; Kenny Roose; Kim Deswarte; Bruno G. De Geest; Stefan Lienenklaus; Philip J. Santangelo; Johan Grooten; Helen O. McCarthy; Stefaan De Koker

To date, the mRNA delivery field has been heavily dominated by lipid-based systems. Reports on the use of nonlipid carriers for mRNA delivery in contrast are rare in the context of mRNA vaccination. This paper describes the potential of a cell-penetrating peptide containing the amphipathic RALA motif to deliver antigen-encoding mRNA to the immune system. RALA condenses mRNA into nanocomplexes that display acidic pH-dependent membrane disruptive properties. RALA mRNA nanocomplexes enable mRNA escape from endosomes and thereby allow expression of mRNA inside the dendritic cell cytosol. Strikingly, RALA mRNA nanocomplexes containing pseudouridine and 5-methylcytidine modified mRNA elicit potent cytolytic T cell responses against the antigenic mRNA cargo and show superior efficacy in doing so when compared to RALA mRNA nanocomplexes containing unmodified mRNA. RALAs unique sequence and structural organization are vital to act as mRNA vaccine vehicle, as arginine-rich peptide variants that lack the RALA motif show reduced mRNA complexation, impaired cellular uptake and lose the ability to transfect dendritic cells in vitro and to evoke T cell immunity in vivo.


Molecular Therapy | 2016

Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses

Ans De Beuckelaer; Charlotte Pollard; Sandra Van Lint; Kenny Roose; Lien Van Hoecke; Thomas Naessens; Vimal Kumar Udhayakumar; Muriel Smet; Niek N. Sanders; Stefan Lienenklaus; Xavier Saelens; Siegfried Weiss; Guido Vanham; Johan Grooten; Stefaan De Koker

Given their high potential to evoke cytolytic T cell responses, tumor antigen-encoding messenger RNA (mRNA) vaccines are now being intensively explored as therapeutic cancer vaccines. mRNA vaccines clearly benefit from wrapping the mRNA into nano-sized carriers such as lipoplexes that protect the mRNA from degradation and increase its uptake by dendritic cells in vivo. Nevertheless, the early innate host factors that regulate the induction of cytolytic T cells to mRNA lipoplex vaccines have remained unresolved. Here, we demonstrate that mRNA lipoplexes induce a potent type I interferon (IFN) response upon subcutaneous, intradermal and intranodal injection. Regardless of the route of immunization applied, these type I IFNs interfered with the generation of potent cytolytic T cell responses. Most importantly, blocking type I IFN signaling at the site of immunization through the use of an IFNAR blocking antibody greatly enhanced the prophylactic and therapeutic antitumor efficacy of mRNA lipoplexes in the highly aggressive B16 melanoma model. As type I IFN induction appears to be inherent to the mRNA itself rather than to unique properties of the mRNA lipoplex formulation, preventing type I IFN induction and/or IFNAR signaling at the site of immunization might constitute a widely applicable strategy to improve the potency of mRNA vaccination.


Immunity, inflammation and disease | 2016

Cholesterol‐sensing liver X receptors stimulate Th2‐driven allergic eosinophilic asthma in mice

Muriel Smet; Lien Van Hoecke; Ans De Beuckelaer; Seppe Vander Beken; Thomas Naessens; Karl Vergote; Monique Willart; Bart N. Lambrecht; Jan Åke Gustafsson; Knut R. Steffensen; Johan Grooten

Liver X receptors (LXRs) are nuclear receptors that function as cholesterol sensors and regulate cholesterol homeostasis. High cholesterol has been recognized as a risk factor in asthma; however, the mechanism of this linkage is not known.


European Journal of Immunology | 2016

Mycobacterium tuberculosis-associated synthetic mycolates differentially exert immune stimulatory adjuvant activity

Muriel Smet; Charlotte Pollard; Ans De Beuckelaer; Lien Van Hoecke; Seppe Vander Beken; Stefaan De Koker; Juma'a R. Al Dulayymi; Kris Huygen; Jan A. Verschoor; Mark S. Baird; Johan Grooten

Mycolic acids (MAs) are highly hydrophobic long‐chain α‐alkyl β‐hydroxy fatty acids present in the cell wall of Mycobacterium tuberculosis (Mtb) as a complex mixture of molecules with a common general structure but with variable functional groups in the meromycolate chain. In this study, we addressed the relationship between the MA molecular structure and their contribution to the development of T‐cell immune responses. Hereto, we used the model antigen ovalbumin and single synthetic MAs, differing in oxygenation class and cis versus trans proximal cyclopropane configuration, as immune stimulatory agents. Subcutaneous delivery of liposome‐formulated MAs with a proximal cis cyclopropane elicited antigen‐specific Th1 and cytotoxic T‐cell immune responses, whereas intratracheal immunization elicited pulmonary Th17 responses. These immune stimulatory activities depended not only on the cis versus trans proximal cyclopropane configuration but also on the MA oxygenation class. Our study thus shows that both the presence and nature of the functional groups in the meromycolate chain affect the immune stimulatory adjuvant activity of Mtb mycolates and suggests that Mtb bacilli may impact on the host protective immune response by modulating the cis versus trans stereochemistry of its mycolates as well as by altering the oxygenation class of the meromycolate functional group.


Molecular Therapy | 2016

Coadministration of a Plasmid Encoding HIV-1 Gag Enhances the Efficacy of Cancer DNA Vaccines

Laure Lambricht; Kevin Vanvarenberg; Ans De Beuckelaer; Lien Van Hoecke; Johan Grooten; Bernard Ucakar; Pascale Lipnik; Niek N. Sanders; Stefan Lienenklaus; Véronique Préat; Gaëlle Vandermeulen

DNA vaccination holds great promise for the prevention and treatment of cancer and infectious diseases. However, the clinical ability of DNA vaccines is still controversial due to the limited immune response initially observed in humans. We hypothesized that electroporation of a plasmid encoding the HIV-1 Gag viral capsid protein would enhance cancer DNA vaccine potency. DNA electroporation used to deliver plasmids in vivo, induced type I interferons, thereby supporting the activation of innate immunity. The coadministration of ovalbumin (OVA) and HIV-1 Gag encoding plasmids modulated the adaptive immune response. This strategy favored antigen-specific Th1 immunity, delayed B16F10-OVA tumor growth and improved mouse survival in both prophylactic and therapeutic vaccination approaches. Similarly, a prophylactic DNA immunization against the melanoma-associated antigen gp100 was enhanced by the codelivery of the HIV-1 Gag plasmid. The adjuvant effect was not driven by the formation of HIV-1 Gag virus-like particles. This work highlights the ability of both electroporation and the HIV-1 Gag plasmid to stimulate innate immunity for enhancing cancer DNA vaccine immunogenicity and demonstrates interesting tracks for the design of new translational genetic adjuvants to overcome the current limitations of DNA vaccines in humans.


Scientific Reports | 2017

Inflammatory monocytes regulate Th1 oriented immunity to CpG adjuvanted protein vaccines through production of IL-12

Stefaan De Koker; Lien Van Hoecke; Ans De Beuckelaer; Kenny Roose; Kim Deswarte; Monique Willart; Pieter Bogaert; Thomas Naessens; Bruno G. De Geest; Xavier Saelens; Bart N. Lambrecht; Johan Grooten

Due to their capacity to skew T cell responses towards Th1 oriented immunity, oligonucleotides containing unmethylated CpG motifs (CpG) have emerged as interesting adjuvants for vaccination. Whereas the signalling pathways in response to CpG mediated TLR9 activation have been extensively documented at the level of the individual cell, little is however known on the precise identity of the innate immune cells that govern T cell priming and polarisation to CpG adjuvanted protein antigens in vivo. In this study, we demonstrate that optimal induction of Th1 oriented immunity to CpG adjuvanted protein vaccines requires the coordinated actions of conventional DCs and of monocytes. Whilst conventional DCs were required for antigen presentation and initial T cell priming, monocytes constitute the main source of the Th1 polarising cytokine IL-12.


Bioconjugate Chemistry | 2017

Transiently Thermoresponsive Acetal Polymers for Safe and Effective Administration of Amphotericin B as a Vaccine Adjuvant

Simon Van Herck; Lien Van Hoecke; Benoit Louage; Lien Lybaert; Ruben De Coen; Sabah Kasmi; Aaron P. Esser-Kahn; Sunil A. David; Lutz Nuhn; Bert Schepens; Xavier Saelens; Bruno G. De Geest

The quest for new potent and safe adjuvants with which to skew and boost the immune response of vaccines against intracellular pathogens and cancer has led to the discovery of a series of small molecules that can activate Toll-like receptors (TLRs). Whereas many small molecule TLR agonists cope with a problematic safety profile, amphotericin B (AmpB), a Food and Drug Administration approved antifungal drug, has recently been discovered to possess TLR-triggering activity. However, its poor aqueous solubility and cytotoxicity at elevated concentrations currently hampers its development as a vaccine adjuvant. We present a new class of transiently thermoresponsive polymers that, in their native state, have a phase-transition temperature below room temperature but gradually transform into fully soluble polymers through acetal hydrolysis at endosomal pH values. RAFT polymerization afforded well-defined block copolymers that self-assemble into micellar nanoparticles and efficiently encapsulate AmpB. Importantly, nanoencapsulation strongly reduced the cytotoxic effect of AmpB but maintained its TLR-triggering capacity. Studies in mice showed that AmpB-loaded nanoparticles can adjuvant an RSV vaccine candidate with almost equal potency as a highly immunogenic oil-in-water benchmark adjuvant.


Nature Communications | 2018

Treatment with mRNA coding for the necroptosis mediator MLKL induces antitumor immunity directed against neo-epitopes

Lien Van Hoecke; Sandra Van Lint; Kenny Roose; Alexander Van Parys; Peter Vandenabeele; Johan Grooten; Jan Tavernier; Stefaan De Koker; Xavier Saelens

Cancer immunotherapy can induce durable antitumor responses. However, many patients poorly respond to such therapies. Here we describe a generic antitumor therapy that is based on the intratumor delivery of mRNA that codes for the necroptosis executioner mixed lineage kinase domain-like (MLKL) protein. This intervention stalls primary tumor growth and protects against distal and disseminated tumor formation in syngeneic mouse melanoma and colon carcinoma models. Moreover, MLKL-mRNA treatment combined with immune checkpoint blockade further improves the antitumor activity. MLKL-mRNA treatment rapidly induces T cell responses directed against tumor neo-antigens and requires CD4+ and CD8+ T cells to prevent tumor growth. Type I interferon signaling and Batf3-dependent dendritic cells are essential for this mRNA treatment to elicit tumor antigen-specific T cell responses. Moreover, MLKL-mRNA treatment blunts the growth of human lymphoma in mice with a reconstituted human adaptive immune system. MLKL-based treatment can thus be exploited as an effective antitumor immunotherapy.Necroptosis has immunogenic cell death properties. Here, the authors show that the intra-tumor delivery of mRNA that codes for the necroptosis effector MLKL triggers neo-epitope-specific anti-tumor T cell responses and inhibits primary tumor growth and lung metastasis.


Cell Stress | 2018

Therapeutic anti-tumor immunity directed against neo-epitopes by intratumor delivery of mRNA encoding MLKL

Lien Van Hoecke; Xavier Saelens

In recent years, it has become increasingly clear that successful treatment of cancer is possible through the induction of anti-tumor immunity combined with killing of tumor cells. One approach to reach this is to apply cancer vaccines comprising tumor-specific antigens to elicit cellular immunity and chemotherapy to reduce the tumor mass. However, in some cases the dying tumor cell can itself become the vaccine, in particular when the antineoplastic treatment induces so called immunogenic cell death. Immunogenic cell death is characterized by the exposure of damage associated molecular patterns (DAMPs). DAMPs are recognized by innate immune cells which subsequently can prime effector T cell responses against tumor-specific antigens. Unfortunately, many tumors resist exogenous immunogenic cell death stimuli through acquired mutations in cell death signaling pathways. In our recent study (Nat Commun, 9(1):3417), we aimed to overcome these issues through the direct delivery in tumor cells of hypo-inflammatory messenger RNA (mRNA) that codes for mixed lineage kinase domain-like (MLKL) protein, an executioner of necroptosis. This mRNA-based treatment resulted in the potent induction of systemic cellular anti-tumor immune responses that were associated with the regression of the treated as well as distal non-treated tumor cells, as demonstrated in mouse models of transplantable tumors.


Acta Biomaterialia | 2018

Surfactant protein B (SP-B) enhances the cellular siRNA delivery of proteolipid coated nanogels for inhalation therapy

Pieterjan Merckx; Lynn De Backer; Lien Van Hoecke; Roberta Guagliardo; Mercedes Echaide; Pieter Baatsen; Bárbara Olmeda; Xavier Saelens; Jesús Pérez-Gil; Stefaan C. De Smedt; Koen Raemdonck

Despite the many advantages of small interfering RNA (siRNA) inhalation therapy and a growing prevalence of respiratory pathologies, its clinical translation is severely hampered by inefficient intracellular delivery. To this end, we previously developed hybrid nanoparticles consisting of an siRNA-loaded nanosized hydrogel core (nanogel) coated with Curosurf®, a clinically used pulmonary surfactant (PS). Interestingly, the PS shell was shown to markedly improve particle stability as well as intracellular siRNA delivery in vitro and in vivo. The major aim of this work was to identify the key molecular components of PS responsible for the enhanced siRNA delivery and evaluate how the complexity of the PS coat could be reduced. We identified surfactant protein B (SP-B) as a potent siRNA delivery enhancer when reconstituted in proteolipid coated hydrogel nanocomposites. Improved cytosolic siRNA delivery was achieved by inserting SP-B into a simplified phospholipid mixture prior to nanogel coating. This effect was observed both in vitro (lung epithelial cell line) and in vivo (murine acute lung injury model), albeit that distinct phospholipids were required to achieve these results. Importantly, the developed nanocomposites have a low in vivo toxicity and are efficiently taken up by resident alveolar macrophages, a main target cell type for treatment of inflammatory pulmonary pathologies. Our results demonstrate the potential of the endogenous protein SP-B as an intracellular siRNA delivery enhancer, paving the way for future design of nanoformulations for siRNA inhalation therapy. STATEMENT OF SIGNIFICANCE Despite the therapeutic potential of small interfering RNA (siRNA) and a growing prevalence of lung diseases for which innovative therapies are needed, a safe and effective siRNA inhalation therapy remains non-existing due to a lack of suitable formulations. We identified surfactant protein B (SP-B) as a potent enhancer of siRNA delivery by proteolipid coated nanogel formulations in vitro in a lung epithelial cell line. The developed nanocomposites have a low in vivo toxicity and show a high uptake by alveolar macrophages, a main target cell type for treatment of inflammatory pulmonary pathologies. Importantly, in vivo SP-B is also critical for the developed formulation to obtain a significant silencing of TNFα in a murine LPS-induced acute lung injury model.

Collaboration


Dive into the Lien Van Hoecke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge