Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liesbeth Spruijt is active.

Publication


Featured researches published by Liesbeth Spruijt.


American Journal of Human Genetics | 2010

Exome Sequencing Identifies WDR35 Variants Involved in Sensenbrenner Syndrome

Christian Gilissen; Heleen H. Arts; Alexander Hoischen; Liesbeth Spruijt; Dorus A. Mans; Peer Arts; Bart van Lier; Marloes Steehouwer; Jeroen van Reeuwijk; Sarina G. Kant; Ronald Roepman; Nine V.A.M. Knoers; Joris A. Veltman; Han G. Brunner

Sensenbrenner syndrome/cranioectodermal dysplasia (CED) is an autosomal-recessive disease that is characterized by craniosynostosis and ectodermal and skeletal abnormalities. We sequenced the exomes of two unrelated CED patients and identified compound heterozygous mutations in WDR35 as the cause of the disease in each of the two patients independently, showing that it is possible to find the causative gene by sequencing the exome of a single sporadic patient. With RT-PCR, we demonstrate that a splice-site mutation in exon 2 of WDR35 alters splicing of RNA on the affected allele, introducing a premature stop codon. WDR35 is homologous to TULP4 (from the Tubby superfamily) and has previously been characterized as an intraflagellar transport component, confirming that Sensenbrenner syndrome is a ciliary disorder.


American Journal of Human Genetics | 2007

Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background.

Gavin Hudson; Valerio Carelli; Liesbeth Spruijt; Mike Gerards; Catherine Mowbray; Alessandro Achilli; Angela Pyle; Joanna L. Elson; Neil Howell; Chiara La Morgia; Maria Lucia Valentino; Kirsi Huoponen; Marja-Liisa Savontaus; Eeva Nikoskelainen; Alfredo A. Sadun; Solange Rios Salomão; Rubens Belfort; Philip G. Griffiths; Patrick Yu Wai Man; René de Coo; Rita Horvath; Massimo Zeviani; Hubert J T Smeets; Antonio Torroni; Patrick F. Chinnery

Leber hereditary optic neuropathy (LHON) is due primarily to one of three common point mutations of mitochondrial DNA (mtDNA), but the incomplete penetrance implicates additional genetic or environmental factors in the pathophysiology of the disorder. Both the 11778G-->A and 14484T-->C LHON mutations are preferentially found on a specific mtDNA genetic background, but 3460G-->A is not. However, there is no clear evidence that any background influences clinical penetrance in any of these mutations. By studying 3,613 subjects from 159 LHON-affected pedigrees, we show that the risk of visual failure is greater when the 11778G-->A or 14484T-->C mutations are present in specific subgroups of haplogroup J (J2 for 11778G-->A and J1 for 14484T-->C) and when the 3460G-->A mutation is present in haplogroup K. By contrast, the risk of visual failure is significantly less when 11778G-->A occurs in haplogroup H. Substitutions on MTCYB provide an explanation for these findings, which demonstrate that common genetic variants have a marked effect on the expression of an ostensibly monogenic mtDNA disorder.


Human Mutation | 2013

A Post-Hoc Comparison of the Utility of Sanger Sequencing and Exome Sequencing for the Diagnosis of Heterogeneous Diseases

Kornelia Neveling; Ilse Feenstra; Christian Gilissen; Lies H. Hoefsloot; Erik-Jan Kamsteeg; Arjen R. Mensenkamp; Richard J. Rodenburg; Helger G. Yntema; Liesbeth Spruijt; Sascha Vermeer; Tuula Rinne; Koen L. van Gassen; Danielle Bodmer; Dorien Lugtenberg; Rick de Reuver; Wendy Buijsman; Ronny Derks; Nienke Wieskamp; Bert van den Heuvel; Marjolijn J. L. Ligtenberg; Hannie Kremer; David A. Koolen; Bart P. van de Warrenburg; Frans P.M. Cremers; Carlo Marcelis; Jan A.M. Smeitink; Saskia B. Wortmann; Wendy A. G. van Zelst-Stams; Joris A. Veltman; Han G. Brunner

The advent of massive parallel sequencing is rapidly changing the strategies employed for the genetic diagnosis and research of rare diseases that involve a large number of genes. So far it is not clear whether these approaches perform significantly better than conventional single gene testing as requested by clinicians. The current yield of this traditional diagnostic approach depends on a complex of factors that include gene‐specific phenotype traits, and the relative frequency of the involvement of specific genes. To gauge the impact of the paradigm shift that is occurring in molecular diagnostics, we assessed traditional Sanger‐based sequencing (in 2011) and exome sequencing followed by targeted bioinformatics analysis (in 2012) for five different conditions that are highly heterogeneous, and for which our center provides molecular diagnosis. We find that exome sequencing has a much higher diagnostic yield than Sanger sequencing for deafness, blindness, mitochondrial disease, and movement disorders. For microsatellite‐stable colorectal cancer, this was low under both strategies. Even if all genes that could have been ordered by physicians had been tested, the larger number of genes captured by the exome would still have led to a clearly superior diagnostic yield at a fraction of the cost.


American Journal of Human Genetics | 2005

Identification of an X-Chromosomal Locus and Haplotype Modulating the Phenotype of a Mitochondrial DNA Disorder

Gavin Hudson; Sharon Keers; Patrick Yu Wai Man; Philip G. Griffiths; Kirsi Huoponen; Marja-Liisa Savontaus; Eeva Nikoskelainen; Massimo Zeviani; Franco Carrara; Rita Horvath; Veronika Karcagi; Liesbeth Spruijt; I. F M De Coo; H.J.M. Smeets; Patrick F. Chinnery

Mitochondrial DNA (mtDNA) mutations are a major cause of human disease. A large number of different molecular defects ultimately compromise oxidative phosphorylation, but it is not clear why the same biochemical defect can cause diverse clinical phenotypes. There is emerging evidence that nuclear genes modulate the phenotype of primary mtDNA disorders. Here, we define an X-chromosomal haplotype that interacts with specific MTND mutations to cause visual failure in the most common mtDNA disease, Leber hereditary optic neuropathy. This effect is independent of the mtDNA genetic background and explains the variable penetrance and sex bias that characterizes this disorder.


Nature Genetics | 2015

A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer

Robbert D.A. Weren; Marjolijn J. L. Ligtenberg; C. Marleen Kets; Richarda M. de Voer; Eugène T P Verwiel; Liesbeth Spruijt; Wendy A. G. van Zelst-Stams; Marjolijn C.J. Jongmans; Christian Gilissen; Jayne Y. Hehir-Kwa; Alexander Hoischen; Jay Shendure; Evan A. Boyle; Eveline J. Kamping; Iris D. Nagtegaal; Bastiaan Tops; Fokko M. Nagengast; Ad Geurts van Kessel; J. Han van Krieken; Roland P. Kuiper; Nicoline Hoogerbrugge

The genetic cause underlying the development of multiple colonic adenomas, the premalignant precursors of colorectal cancer (CRC), frequently remains unresolved in patients with adenomatous polyposis. Here we applied whole-exome sequencing to 51 individuals with multiple colonic adenomas from 48 families. In seven affected individuals from three unrelated families, we identified a homozygous germline nonsense mutation in the base-excision repair (BER) gene NTHL1. This mutation was exclusively found in a heterozygous state in controls (minor allele frequency of 0.0036; n = 2,329). All three families showed recessive inheritance of the adenomatous polyposis phenotype and progression to CRC in at least one member. All three affected women developed an endometrial malignancy or premalignancy. Genetic analysis of three carcinomas and five adenomas from different affected individuals showed a non-hypermutated profile enriched for cytosine-to-thymine transitions. We conclude that a homozygous loss-of-function germline mutation in the NTHL1 gene predisposes to a new subtype of BER-associated adenomatous polyposis and CRC.


Journal of Medical Genetics | 2011

C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome

Heleen H. Arts; Ernie M.H.F. Bongers; Dorus A. Mans; Sylvia E. C. van Beersum; Machteld M. Oud; Emine Bolat; Liesbeth Spruijt; Elisabeth A. M. Cornelissen; Janneke H M Schuurs-Hoeijmakers; Nicole de Leeuw; Valérie Cormier-Daire; Han G. Brunner; N.V.A.M. Knoers; Ronald Roepman

Background Sensenbrenner syndrome is a heterogeneous ciliopathy that is characterised by skeletal and ectodermal anomalies, accompanied by chronic renal failure, heart defects, liver fibrosis and other features. Objective To identify an additional causative gene in Sensenbrenner syndrome. Methods Single nucleotide polymorphism array analysis and standard sequencing techniques were applied to identify the causative gene. The effect of the identified mutation on protein translation was determined by western blot analysis. Antibodies against intraflagellar transport (IFT) proteins were used in ciliated fibroblast cell lines to investigate the molecular consequences of the mutation on ciliary transport. Results Homozygosity mapping and positional candidate gene sequence analysis were performed in two siblings with Sensenbrenner syndrome of a consanguineous Moroccan family. In both siblings, a homozygous mutation in the initiation codon of C14ORF179 was identified. C14ORF179 encodes IFT43, a subunit of the IFT complex A (IFT-A) machinery of primary cilia. Western blots showed that the mutation disturbs translation of IFT43, inducing the initiation of translation of a shorter protein product from a downstream ATG. The IFT-A protein complex is implicated in retrograde ciliary transport along axonemal microtubules. It was shown that in fibroblasts of one of the siblings affected by Sensenbrenner syndrome, disruption of IFT43 disturbs this transport from the ciliary tip to its base. As anterograde transport in the opposite direction apparently remains functional, the IFT complex B proteins accumulate in the ciliary tip. Interestingly, similar results were obtained using fibroblasts from a patient with Sensenbrenner syndrome with mutations in WDR35/IFT121, encoding another IFT-A subunit. Conclusions The results indicate that Sensenbrenner syndrome is caused by disrupted IFT-A-mediated retrograde ciliary transport.


American Journal of Human Genetics | 2003

Sequence analysis of the mitochondrial genomes from Dutch pedigrees with Leber hereditary optic neuropathy

Neil Howell; Roelof-Jan Oostra; Piet A. Bolhuis; Liesbeth Spruijt; Lorne A. Clarke; David A. Mackey; Gwen Preston; Corinna Herrnstadt

The complete mitochondrial DNA (mtDNA) sequences for 63 Dutch pedigrees with Leber hereditary optic neuropathy (LHON) were determined, 56 of which carried one of the classic LHON mutations at nucleotide (nt) 3460, 11778, or 14484. Analysis of these sequences indicated that there were several instances in which the mtDNAs were either identical or related by descent. The most striking example was a haplogroup J mtDNA that carried the 14484 LHON mutation. Four different but related mitochondrial genotypes were identified in seven of the Dutch pedigrees with LHON, including six of those described by van Senus. The control region of the founder sequence for these Dutch pedigrees with LHON matches the control-region sequence that Macmillan and colleagues identified in the founder mtDNA of French Canadian pedigrees with LHON. In addition, we obtained a perfect match between the Dutch 14484 founder sequence and the complete mtDNA sequences of two Canadian pedigrees with LHON. Those results indicate that these Dutch and French Canadian 14484 pedigrees with LHON share a common ancestor, that the single origin of the 14484 mutation in this megalineage occurred before the year 1600, and that there is a 14484/haplogroup J founder effect. We estimate that this lineage--including the 14484 LHON mutation--arose 900-1,800 years ago. Overall, the phylogenetic analyses of these mtDNA sequences conservatively indicate that a LHON mutation has arisen at least 42 times in the Dutch population. Finally, analysis of the mtDNA sequences from those pedigrees that did not carry classic LHON mutations suggested candidate pathogenic mutations at nts 9804, 13051, and 14325.


Journal of Clinical Oncology | 2015

Lynch Syndrome Caused by Germline PMS2 Mutations: Delineating the Cancer Risk

Sanne W. ten Broeke; Richard Brohet; Carli C. Tops; Heleen M. van der Klift; M.E. Velthuizen; Inge Bernstein; Gabriel Capellá Munar; Encarna Gomez Garcia; Nicoline Hoogerbrugge; Tom G. W. Letteboer; Fred F. Menko; Annika A. Lindblom; Arjen R. Mensenkamp; Pål Møller; Theo A. van Os; Nils Rahner; Bert Redeker; Rolf H. Sijmons; Liesbeth Spruijt; Manon Suerink; Yvonne J. Vos; Anja Wagner; Frederik J. Hes; Hans Vasen; Maartje Nielsen; Juul T. Wijnen

PURPOSE The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS Data were collected from 98 PMS2 families ascertained from family cancer clinics that included a total of 2,548 family members and 377 proven mutation carriers. To adjust for potential ascertainment bias, a modified segregation analysis model was used to calculate colorectal cancer (CRC) and endometrial cancer (EC) risks. Standardized incidence ratios (SIRs) were calculated to estimate risks for other Lynch syndrome-associated cancers. RESULTS The cumulative risk (CR) of CRC for male mutation carriers by age 70 years was 19%. The CR among female carriers was 11% for CRC and 12% for EC. The mean age of CRC development was 52 years, and there was a significant difference in mean age of CRC between the probands (mean, 47 years; range, 26 to 68 years) and other family members with a PMS2 mutation (mean, 58 years; range, 31 to 86 years; P < .001). Significant SIRs were observed for cancers of the small bowel, ovaries, breast, and renal pelvis. CONCLUSION CRC and EC risks were found to be markedly lower than those previously reported for the other MMR. However, these risks embody the isolated risk of carrying a PMS2 mutation, and it should be noted that we observed a substantial variation in cancer phenotype within and between families, suggesting the influence of genetic modifiers and lifestyle factors on cancer risks.


Journal of Clinical Oncology | 2010

Genetic Testing in Li-Fraumeni Syndrome: Uptake and Psychosocial Consequences

C. R. M. Lammens; Neil K. Aaronson; Anja Wagner; Rolf H. Sijmons; Margreet G. E. M. Ausems; Annette H. J. T. Vriends; Marielle W. G. Ruijs; Theo A. van Os; Liesbeth Spruijt; Encarna Gomez Garcia; Irma Kluijt; Tanja Nagtegaal; Senno Verhoef; Eveline M. A. Bleiker

PURPOSE Li-Fraumeni syndrome (LFS) is a hereditary cancer syndrome, characterized by a high risk of developing cancer at various sites and ages. To date, limited clinical benefits of genetic testing for LFS have been demonstrated, and there are concerns about the potential adverse psychosocial impact of genetic testing for LFS. In this study, we evaluated the uptake of genetic testing and the psychosocial impact of undergoing or not undergoing a genetic test for LFS. PATIENTS AND METHODS In total, 18 families with a p53 germline mutation in the Netherlands were identified. Eligible family members were invited to complete a self-report questionnaire assessing motives for undergoing or not undergoing genetic testing, LFS-related distress and worries, and health-related quality of life. RESULTS Uptake of presymptomatic testing was 55% (65 of 119). Of the total group, 23% reported clinically relevant levels of LFS-related distress. Carriers were not significantly more distressed than noncarriers or than those with a 50% risk who did not undergo genetic testing. Those with a lack of social support were more prone to report clinically relevant levels of distress (odds ratio, 1.3; 95% CI, 1.0 to 1.5). CONCLUSION Although preventive and treatment options for LFS are limited, more than half of the family members from known LFS families choose to undergo presymptomatic testing. An unfavorable genetic test result, in general, does not cause adverse psychological effects. Nonetheless, it is important to note that a substantial proportion of individuals, irrespective of their carrier status, exhibit clinically relevant levels of distress which warrant psychological support.


European Journal of Human Genetics | 2004

Founder mutations among the Dutch

Maurice P. A. Zeegers; Frans Van Poppel; Robert Vlietinck; Liesbeth Spruijt; Harry Ostrer

Many genetic disorders demonstrate mutations that can be traced to a founder, sometimes a person who can be identified. These founder mutations have generated considerable interest, because they facilitate studies of prevalence and penetrance and can be used to quantify the degree of homogeneity within a population. This paper reports on founder mutations among the Dutch and relates their occurrence to the history and demography of the Netherlands. International migration, regional and religious endogamy, and rapid population growth played key roles in shaping the Dutch population. In the first millenniums BC and AD, the Netherlands were invaded by Celts, Romans, Huns, and Germans. In more recent times, large numbers of Huguenots and Germans migrated into the Netherlands. Population growth within the Netherlands was slow until the 19th century, when a period of rapid population growth started. Today, the Dutch population numbers 16 million inhabitants. Several different classes of founder mutations have been identified among the Dutch. Some mutations occur among people who represent genetic isolates within this country. These include mutations for benign familial cholestasis, diabetes mellitus, type I, infantile neuronal ceroid lipofuscinosis, L-DOPA responsive dystonia, and triphalangeal thumb. Although not related to a specific isolate, other founder mutations were identified only within the Netherlands, including those predisposing for hereditary breast-ovarian cancer, familial hypercholesterolemia, frontotemporal dementia, hereditary paragangliomas, juvenile neuronal ceroid lipofuscinosis, malignant melanoma, protein C deficiency, and San Filippo disease. Many of these show a regional distribution, suggesting dissemination from a founder. Some mutations that occur among the Dutch are shared with other European populations and others have been transmitted by Dutch émigrés to their descendents in North America and South Africa. The occurrence of short chromosomal regions that have remained identical by descent has resulted in relatively limited genetic heterogeneity for many genetic conditions among the Dutch. These observations demonstrate the opportunity for gene discovery for other diseases and traits in the Netherlands.

Collaboration


Dive into the Liesbeth Spruijt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Wagner

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederik J. Hes

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Gilissen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Han G. Brunner

Radboud University Nijmegen

View shared research outputs
Researchain Logo
Decentralizing Knowledge