Ligia I. Bastea
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ligia I. Bastea.
Journal of Biological Chemistry | 2011
Samantha J. Spratley; Ligia I. Bastea; Heike Döppler; Kensaku Mizuno; Peter Storz
Background: PKD inhibits actin-driven directed cell migration. Results: PKD regulates cofilin activity through LIMK and PAK4. Conclusion: PKD increases the net amount of inactive cofilin in cells. Significance: The regulation of cofilin activity at multiple levels explains the inhibitory effects of PKD on directed cell migration. Dynamic reorganization of the actin cytoskeleton at the leading edge is required for directed cell migration. Cofilin, a small actin-binding protein with F-actin severing activities, is a key enzyme initiating such actin remodeling processes. Cofilin activity is tightly regulated by phosphorylation and dephosphorylation events that are mediated by LIM kinase (LIMK) and the phosphatase slingshot (SSH), respectively. Protein kinase D (PKD) is a serine/threonine kinase that inhibits actin-driven directed cell migration by phosphorylation and inactivation of SSH. Here, we show that PKD can also regulate LIMK through direct phosphorylation and activation of its upstream kinase p21-activated kinase 4 (PAK4). Therefore, active PKD increases the net amount of phosphorylated inactive cofilin in cells through both pathways. The regulation of cofilin activity at multiple levels may explain the inhibitory effects of PKD on barbed end formation as well as on directed cell migration.
PLOS ONE | 2012
Ligia I. Bastea; Heike Döppler; Bolanle Balogun; Peter Storz
Background Protein Kinase D1 is downregulated in its expression in invasive ductal carcinoma of the breast and in invasive breast cancer cells, but its functions in normal breast epithelial cells is largely unknown. The epithelial phenotype is maintained by cell-cell junctions formed by E-cadherin. In cancer cells loss of E-cadherin expression contributes to an invasive phenotype. This can be mediated by SNAI1, a transcriptional repressor for E-cadherin that contributes to epithelial-to-mesenchymal transition (EMT). Methodology/Principal Findings Here we show that PKD1 in normal murine mammary gland (NMuMG) epithelial cells is constitutively-active in its basal state and prevents a transition to a mesenchymal phenotype. Investigation of the involved mechanism suggested that PKD1 regulates the expression of E-cadherin at the promoter level through direct phosphorylation of the transcriptional repressor SNAI1. PKD1-mediated phosphorylation of SNAI1 occurs in the nucleus and generates a nuclear, inactive DNA/SNAI1 complex that shows decreased interaction with its co-repressor Ajuba. Analysis of human tissue samples with a newly-generated phosphospecific antibody for PKD1-phosphorylated SNAI1 showed that regulation of SNAI1 through PKD1 occurs in vivo in normal breast ductal tissue and is decreased or lost in invasive ductal carcinoma. Conclusions/Significance Our data describe a mechanism of how PKD1 maintains the breast epithelial phenotype. Moreover, they suggest, that the analysis of breast tissue for PKD-mediated phosphorylation of SNAI1 using our novel phosphoS11-SNAI1-specific antibody may allow predicting the invasive potential of breast cancer cells.
Journal of Biological Chemistry | 2013
Heike Döppler; Ligia I. Bastea; Laura J. Lewis-Tuffin; Panos Z. Anastasiadis; Peter Storz
Background: Protein kinase D1 (PKD1) regulates actin reorganization processes at the leading edge. Results: PKD1 phosphorylates VASP at two serine residues, Ser-157 and Ser-322. Conclusion: VASP is a substrate for PKD1. Significance: We provide an additional mechanism of how VASP functions can be regulated. Enabled/Vasodilator-stimulated phosphoprotein (Ena/VASP) protein family members link actin dynamics and cellular signaling pathways. VASP localizes to regions of dynamic actin reorganization such as the focal adhesion contacts, the leading edge or filopodia, where it contributes to F-actin filament elongation. Here we identify VASP as a novel substrate for protein kinase D1 (PKD1). We show that PKD1 directly phosphorylates VASP at two serine residues, Ser-157 and Ser-322. These phosphorylations occur in response to RhoA activation and mediate VASP re-localization from focal contacts to the leading edge region. The net result of this PKD1-mediated phosphorylation switch in VASP is increased filopodia formation and length at the leading edge. However, such signaling when persistent induced membrane ruffling and decreased cell motility.
PLOS ONE | 2014
Heike Döppler; Ligia I. Bastea; Sahra Borges; Samantha J. Spratley; Sarah E. Pearce; Peter Storz
Background Protein kinase D (PKD) enzymes regulate cofilin-driven actin reorganization and directed cell migration through both p21-activated kinase 4 (PAK4) and the phosphatase slingshot 1L (SSH1L). The relative contributions of different endogenous PKD isoforms to both signaling pathways have not been elucidated, sufficiently. Methodology/Principal Findings We here analyzed two cell lines (HeLa and MDA-MB-468) that express the subtypes protein kinase D2 (PKD2) and protein kinase D3 (PKD3). We show that under normal growth conditions both isoforms can form a complex, in which PKD3 is basally-active and PKD2 is inactive. Basal activity of PKD3 mediates PAK4 activity and downstream signaling, but does not significantly inhibit SSH1L. This signaling constellation was required for facilitating directed cell migration. Activation of PKD2 and further increase of PKD3 activity leads to additional phosphorylation and inhibition of endogenous SSH1L. Net effect is a dramatic increase in phospho-cofilin and a decrease in cell migration, since now both PAK4 and SSH1L are regulated by the active PKD2/PKD3 complex. Conclusions/Significance Our data suggest that PKD complexes provide an interface for both cofilin regulatory pathways. Dependent on the activity of involved PKD enzymes signaling can be balanced to guarantee a functional cofilin activity cycle and increase cell migration, or imbalanced to decrease cell migration. Our data also provide an explanation of how PKD isoforms mediate different effects on directed cell migration.
Journal of Biological Chemistry | 2013
Heike Döppler; Ligia I. Bastea; Tim Eiseler; Peter Storz
Background: Neuregulin (NRG) is overexpressed in 30% of breast cancers and mediates tumor cell migration and invasion. Results: NRG mediates its effects on tumor cell migration via inhibition of PKD1. Conclusion: NRG is a negative regulator of PKD1 and acts through Rac1. Significance: We provide a mechanism through which the NRG/Rac1 pathway cross-talks with PKD1 signaling pathways to facilitate directed cell migration. Neuregulin (NRG; heregulin) is overexpressed in ∼30% of breast cancers and mediates various processes involved in tumor progression, including tumor cell migration and invasion. Here, we show that NRG mediates its effects on tumor cell migration via PKD1. Downstream of RhoA, PKD1 can prevent directed cell migration through phosphorylation of its substrate SSH1L. NRG exerts its inhibitory effects on PKD1 through Rac1/NADPH oxidase, leading to decreased PKD1 activation loop phosphorylation and decreased activity toward SSH1L. The consequence of PKD1 inhibition by NRG is decreased binding of 14-3-3 to SSH1L, localization of SSH1L to F-actin at the leading edge, and increased cofilin activity, resulting in increased reorganization of the actin cytoskeleton and cell motility. Our data provide a mechanism through which the Rho GTPase Rac1 cross-talks with PKD1 signaling pathways to facilitate directed cell migration.
Biochemical Journal | 2013
Ligia I. Bastea; Heike Döppler; Sarah E. Pearce; Nisha Durand; Samantha J. Spratley; Peter Storz
PAKs (p21-activated kinases) are effectors of RhoGTPases. PAK4 contributes to regulation of cofilin at the leading edge of migrating cells through activation of LIMK (Lin-11/Isl-1/Mec-3 kinase). PAK4 activity is regulated by an autoinhibitory domain that is released upon RhoGTPase binding as well as phosphorylation at Ser474 in the activation loop of the kinase domain. In the present study, we add another level of complexity to PAK4 regulation by showing that phosphorylation at Ser99 is required for its targeting to the leading edge. This phosphorylation is mediated by PKD1 (protein kinase D1). Phosphorylation of PAK4 at Ser99 also mediates binding to 14-3-3 protein, and is required for the formation of a PAK4-LIMK-PKD1 complex that regulates cofilin activity and directed cell migration.
Cell Reports | 2017
Geou Yarh Liou; Ligia I. Bastea; Alicia K. Fleming; Heike Döppler; Brandy Edenfield; David W. Dawson; Lizhi Zhang; Nabeel Bardeesy; Peter Storz
The contributions of the innate immune system to the development of pancreatic cancer are still ill defined. Inflammatory macrophages can initiate metaplasia of pancreatic acinar cells to a duct-like phenotype (acinar-to-ductal metaplasia [ADM]), which then gives rise to pancreatic intraepithelial neoplasia (PanIN) when oncogenic KRas is present. However, it remains unclear when and how this inflammatory macrophage population is replaced by tumor-promoting macrophages. Here, we demonstrate the presence of interleukin-13 (IL-13), which can convert inflammatory into Ym1+ alternatively activated macrophages, at ADM/PanIN lesions. We further show that Ym1+ macrophages release factors, such as IL-1ra and CCL2, to drive pancreatic fibrogenesis and tumorigenesis. Treatment of mice expressing oncogenic KRas under an acinar cell-specific promoter with a neutralizing antibody for IL-13 significantly decreased the accumulation of alternatively activated macrophages at these lesions, resulting in decreased fibrosis and lesion growth.
Scientific Reports | 2016
Nisha Durand; Ligia I. Bastea; Jason Long; Heike Döppler; Kun Ling; Peter Storz
Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs’ lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process.
Oncotarget | 2015
Heike Döppler; Ligia I. Bastea; Sahra Borges; Xochiquetzal J. Geiger; Peter Storz
Vasodilator-stimulated phosphoprotein (VASP) signaling is critical for dynamic actin reorganization processes that define the motile phenotype of cells. Here we show that VASP is generally highly expressed in normal breast tissue and breast cancer. We also show that the phosphorylation status of VASP at S322 can be predictive for breast cancer progression to an aggressive phenotype. Our data indicate that phosphorylation at S322 is gradually decreased from normal breast to DCIS, luminal/ER+, HER2+ and basal-like/TN phenotypes. Similarly, the expression levels of PKD2, the kinase that phosphorylates VASP at this site, are decreased in invasive ductal carcinoma samples of all three groups. Overall, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors.
Scientific Reports | 2017
Nisha Durand; Ligia I. Bastea; Heike Döppler; Tim Eiseler; Peter Storz
Dependent on their cellular localization, Protein Kinase D (PKD) enzymes regulate different processes including Golgi transport, cell signaling and response to oxidative stress. The localization of PKD within cells is mediated by interaction with different lipid or protein binding partners. With the example of PKD2, we here show that phosphorylation events can also contribute to localization of subcellular pools of this kinase. Specifically, in the present study, we show that tyrosine phosphorylation of PKD2 at residue Y87 defines its localization to the focal adhesions and leads to activation. This phosphorylation occurs downstream of RhoA signaling and is mediated via Src. Moreover, mutation of this residue blocks PKD2’s interaction with Focal Adhesion Kinase (FAK). The presence and regulation of PKD2 at focal adhesions identifies a novel function for this kinase as a modulator of cell adhesion and migration.