Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David W. Dawson is active.

Publication


Featured researches published by David W. Dawson.


Diabetes | 2013

Marked Expansion of Exocrine and Endocrine Pancreas with Incretin Therapy in Humans with increased Exocrine Pancreas Dysplasia and the potential for Glucagon-producing Neuroendocrine Tumors

Alexandra E. Butler; Martha Campbell-Thompson; Tatyana Gurlo; David W. Dawson; Mark A. Atkinson; Peter C. Butler

Controversy exists regarding the potential regenerative influences of incretin therapy on pancreatic β-cells versus possible adverse pancreatic proliferative effects. Examination of pancreata from age-matched organ donors with type 2 diabetes mellitus (DM) treated by incretin therapy (n = 8) or other therapy (n = 12) and nondiabetic control subjects (n = 14) reveals an ∼40% increased pancreatic mass in DM treated with incretin therapy, with both increased exocrine cell proliferation (P < 0.0001) and dysplasia (increased pancreatic intraepithelial neoplasia, P < 0.01). Pancreata in DM treated with incretin therapy were notable for α-cell hyperplasia and glucagon-expressing microadenomas (3 of 8) and a neuroendocrine tumor. β-Cell mass was reduced by ∼60% in those with DM, yet a sixfold increase was observed in incretin-treated subjects, although DM persisted. Endocrine cells costaining for insulin and glucagon were increased in DM compared with non-DM control subjects (P < 0.05) and markedly further increased by incretin therapy (P < 0.05). In conclusion, incretin therapy in humans resulted in a marked expansion of the exocrine and endocrine pancreatic compartments, the former being accompanied by increased proliferation and dysplasia and the latter by α-cell hyperplasia with the potential for evolution into neuroendocrine tumors.


Cell | 2014

Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy.

Mara H. Sherman; Ruth T. Yu; Dannielle D. Engle; Ning Ding; Annette R. Atkins; Hervé Tiriac; Eric A. Collisson; Frances Connor; Terry Van Dyke; Serguei Kozlov; Philip Martin; Tiffany W. Tseng; David W. Dawson; Timothy R. Donahue; Atsushi Masamune; Tooru Shimosegawa; Minoti V. Apte; Jeremy S. Wilson; Beverly Ng; Sue Lynn Lau; Jenny E. Gunton; Geoffrey M. Wahl; Tony Hunter; Jeffrey A. Drebin; Peter J. O’Dwyer; Christopher Liddle; David A. Tuveson; Michael Downes; Ronald M. Evans

The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK:


Gastroenterology | 2012

Dysregulation of Wnt/β-Catenin Signaling in Gastrointestinal Cancers

Bryan D. White; Andy J. Chien; David W. Dawson

Aberrant Wnt/β-catenin signaling is widely implicated in numerous malignancies, including cancers of the gastrointestinal tract. Dysregulation of signaling is traditionally attributed to mutations in Axin, adenomatous polyposis coli, and β-catenin that lead to constitutive hyperactivation of the pathway. However, Wnt/β-catenin signaling is also modulated through various other mechanisms in cancer, including cross talk with other altered signaling pathways. A more complex view of Wnt/β-catenin signaling and its role in gastrointestinal cancers is now emerging as divergent phenotypic outcomes are found to be dictated by temporospatial context and relative levels of pathway activation. This review summarizes the dysregulation of Wnt/β-catenin signaling in colorectal carcinoma, hepatocellular carcinoma, and pancreatic ductal adenocarcinoma, with particular emphasis on the latter two. We conclude by addressing some of the major challenges faced in attempting to target the pathway in the clinic.


Diabetes | 2012

Chronic GLP-1 Receptor Activation by Exendin-4 Induces Expansion of Pancreatic Duct Glands in Rats and Accelerates Formation of Dysplastic Lesions and Chronic Pancreatitis in the KrasG12D Mouse Model

Belinda Gier; Aleksey V. Matveyenko; David Kirakossian; David W. Dawson; Sarah M. Dry; Peter C. Butler

Pancreatic duct glands (PDGs) have been hypothesized to give rise to pancreatic intraepithelial neoplasia (PanIN). Treatment with the glucagon-like peptide (GLP)-1 analog, exendin-4, for 12 weeks induced the expansion of PDGs with mucinous metaplasia and columnar cell atypia resembling low-grade PanIN in rats. In the pancreata of Pdx1-Cre; LSL-KrasG12D mice, exendin-4 led to acceleration of the disruption of exocrine architecture and chronic pancreatitis with mucinous metaplasia and increased formation of murine PanIN lesions. PDGs and PanIN lesions in rodent and human pancreata express the GLP-1 receptor. Exendin-4 induced proproliferative signaling pathways in human pancreatic duct cells, cAMP–protein kinase A and mitogen-activated protein kinase phosphorylation of cAMP-responsive element-binding protein, and increased cyclin D1 expression. These GLP-1 effects were more pronounced in the presence of an activating mutation of Kras and were inhibited by metformin. These data reveal that GLP-1 mimetic therapy may induce focal proliferation in the exocrine pancreas and, in the context of exocrine dysplasia, may accelerate formation of neoplastic PanIN lesions and exacerbate chronic pancreatitis.


Journal of Clinical Oncology | 2010

Cellular Histone Modification Patterns Predict Prognosis and Treatment Response in Resectable Pancreatic Adenocarcinoma: Results From RTOG 9704

Ananya Manuyakorn; Rebecca Paulus; James J. Farrell; Nicole A. Dawson; Sheila Tze; Gardenia Cheung-Lau; Oscar J. Hines; Howard A. Reber; David Seligson; Steve Horvath; Siavash K. Kurdistani; Chandhan Guha; David W. Dawson

PURPOSE Differences in cellular levels of histone modifications have predicted clinical outcome in certain cancers. Here, we studied the prognostic and predictive value of three histone modifications in pancreatic adenocarcinoma. METHODS Tissue microarrays (TMAs) from two pancreatic adenocarcinoma cohorts were examined, including those from a 195-patient cohort from Radiation Therapy Oncology Group trial RTOG 9704, a multicenter, phase III, randomized treatment trial comparing adjuvant gemcitabine with fluorouracil and a 140-patient cohort of patients with stage I or II cancer from University of California, Los Angeles Medical Center. Immunohistochemistry was performed for histone H3 lysine 4 dimethylation (H3K4me2), histone H3 lysine 9 dimethylation (H3K9me2), and histone H3 lysine 18 acetylation (H3K18ac). Positive tumor cell staining for each histone modification was used to classify patients into low- and high-staining groups, which were related to clinicopathologic parameters and clinical outcome measures. Results Low cellular levels of H3K4me2, H3K9me2, or H3K18ac were each significant and independent predictors of poor survival in univariate and multivariate models, and combined low levels of H3K4me2 and/or H3K18ac were the most significant predictor of overall survival (hazard ratio, 2.93; 95% CI, 1.78 to 4.82) in the University of California, Los Angeles cohort. In subgroup analyses, histone levels were predictive of survival specifically for those patients with node-negative cancer or for those patients receiving adjuvant fluorouracil, but not gemcitabine, in RTOG 9704. CONCLUSION Cellular levels of histone modifications define previously unrecognized subsets of patients with pancreatic adenocarcinoma with distinct epigenetic phenotypes and clinical outcomes and represent prognostic and predictive biomarkers that could inform clinical decisions, including the use of fluorouracil chemotherapy.


Clinical Gastroenterology and Hepatology | 2008

Evaluation of the Guidelines for Management of Pancreatic Branch-Duct Intraductal Papillary Mucinous Neoplasm

Raymond S. Tang; Benjamin M. Weinberg; David W. Dawson; Howard A. Reber; Oscar J. Hines; James S. Tomlinson; Vinika V. Chaudhari; Steven S. Raman; James J. Farrell

BACKGROUND & AIMS The 2006 Sendai Consensus Guidelines recommend surgical resection for all suspected branch-duct intraductal papillary mucinous neoplasm (BD-IPMN) greater than 3 cm irrespective of symptoms, and those less than 3 cm with worrisome features. We aimed to evaluate the surgical characteristics of these guidelines retrospectively in pathologically confirmed cases of BD-IPMN. METHODS IPMNs resected at our institution (1995-2006) were classified as main-duct predominant or branch-duct (BD) predominant based on preoperative imaging and postoperative histology. Resected BD-IPMNs were classified histologically: low risk (adenoma, borderline) and high risk (carcinoma in situ or invasive cancer). Clinical data (presence of symptoms, mural nodule, dilated pancreatic duct, and cyst size) were correlated with pathology. RESULTS Between 1995 and 2006, there were 204 patients who underwent surgical resection of pancreatic cysts. Sixty-one patients had IPMN including 31 with BD-IPMN. A total of 74.2% (23 of 31) of BD-IPMNs would have been recommended for surgical resection including 69.2% (18 of 26) of low-risk lesions and 100% (5 of 5) of high-risk lesions. All 8 cases of BD-IPMN that would have been recommended for nonsurgical management were low-risk lesions. The positive predictive value of the guidelines is 21.7% (95% confidence interval, 9.7%-41.9%). The negative predictive value is 100% (95% confidence interval, 67.6%-100.0%). Between 2000 and 2007, 351 patients with likely BD-IPMN were evaluated but not resected. CONCLUSIONS Implementation of the Consensus Guidelines to our single-institution, referral-based, surgical BD-IPMN population would have recommended resection of all histologically high-risk lesions. All lesions recommended for nonsurgical management were histologically low-risk lesions. For presumed BD-IPMNs less than 3 cm, the application of the Consensus Guidelines may reduce the resection rate for low-risk lesions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma

Karen M. Mann; Jerrold M. Ward; Christopher Chin Kuan Yew; Anne N. Kovochich; David W. Dawson; Michael A. Black; Benjamin T. Brett; Todd Sheetz; Adam J. Dupuy; David K. Chang; Andrew V. Biankin; Nicola Waddell; Karin S. Kassahn; Sean M. Grimmond; Alistair G. Rust; David J. Adams; Nancy A. Jenkins; Neal G. Copeland

Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Inaugural article: Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma

Karen M. Mann; Jerrold M. Ward; Christopher Chin Kuan Yew; Anne N. Kovochich; David W. Dawson; Black; Benjamin T. Brett; Todd Sheetz; Adam J. Dupuy; David K. Chang; Andrew V. Biankin; Nick Waddell; Karin S. Kassahn; Sean M. Grimmond; Alistair G. Rust; David J. Adams; Nancy A. Jenkins; Neal G. Copeland

Pancreatic cancer is one of the most deadly cancers affecting the Western world. Because the disease is highly metastatic and difficult to diagnosis until late stages, the 5-y survival rate is around 5%. The identification of molecular cancer drivers is critical for furthering our understanding of the disease and development of improved diagnostic tools and therapeutics. We have conducted a mutagenic screen using Sleeping Beauty (SB) in mice to identify new candidate cancer genes in pancreatic cancer. By combining SB with an oncogenic Kras allele, we observed highly metastatic pancreatic adenocarcinomas. Using two independent statistical methods to identify loci commonly mutated by SB in these tumors, we identified 681 loci that comprise 543 candidate cancer genes (CCGs); 75 of these CCGs, including Mll3 and Ptk2, have known mutations in human pancreatic cancer. We identified point mutations in human pancreatic patient samples for another 11 CCGs, including Acvr2a and Map2k4. Importantly, 10% of the CCGs are involved in chromatin remodeling, including Arid4b, Kdm6a, and Nsd3, and all SB tumors have at least one mutated gene involved in this process; 20 CCGs, including Ctnnd1, Fbxo11, and Vgll4, are also significantly associated with poor patient survival. SB mutagenesis provides a rich resource of mutations in potential cancer drivers for cross-comparative analyses with ongoing sequencing efforts in human pancreatic adenocarcinoma.


Cancer Research | 2007

Delayed Progression of Pancreatic Intraepithelial Neoplasia in a Conditional KrasG12D Mouse Model by a Selective Cyclooxygenase-2 Inhibitor

Hitoshi Funahashi; Makoto Satake; David W. Dawson; Ngoc-An Huynh; Howard A. Reber; Oscar J. Hines; Guido Eibl

Pancreatic ductal adenocarcinomas are thought to arise from noninvasive, intraductal precursor lesions called pancreatic intraepithelial neoplasias (PanIN). The study of PanINs holds great promise for the identification of early detection markers and effective cancer-preventing strategies. Cyclooxygenase-2 (COX-2) represents an intriguing target for therapeutic and preventive approaches in various human malignancies. The aim of the present study was to evaluate the efficacy of a selective COX-2 inhibitor to prevent the progression of PanINs in a conditional Kras(G12D) mouse model. Offspring of LSL-KRAS(G12D) x PDX-1-Cre intercrosses were randomly allocated to a diet supplemented with the selective COX-2 inhibitor nimesulide (400 ppm) or a control diet. After 10 months, animals were sacrificed. Successful recombination in the pancreas was evaluated by PCR. The pancreas of KRAS(G12D);PDX-1-Cre mice was analyzed for the presence of murine PanINs. Animals fed the COX-2 inhibitor had significantly fewer PanIN-2 and PanIN-3 lesions than control animals (P < 0.05). Ten percent of all pancreatic ducts in the nimesulide-fed animals showed PanIN-2 or PanIN-3 lesions, whereas 40% of the pancreatic ducts in the control animals had PanIN-2 or PanIN-3 lesions. Intrapancreatic prostaglandin E(2) levels were reduced in nimesulide-fed animals. Immunohistochemistry confirmed COX-2 expression in early and late PanINs. In summary, we found that the selective COX-2 inhibitor nimesulide delays the progression of pancreatic cancer precursor lesions in a preclinical animal model. These data highlight the importance of COX-2 in the development of pancreatic cancer. Inhibition of COX-2 may represent an intriguing strategy to prevent pancreatic cancer in high-risk patients.


Cancer Research | 2010

PTEN Loss Accelerates KrasG12D-Induced Pancreatic Cancer Development

Reginald Hill; Joseph Hargan Calvopina; Christine Kim; Ying Wang; David W. Dawson; Timothy R. Donahue; Sarah M. Dry; Hong Wu

KRAS mutations are found in ∼90% of human pancreatic ductal adenocarcinomas (PDAC). However, mice genetically engineered to express Kras(G12D) from its endogenous locus develop PDACs only after a prolonged latency, indicating that other genetic events or pathway alterations are necessary for PDAC progression. The PTEN-controlled phosphatidylinositol 3-kinase (PI3K)/AKT signaling axis is dysregulated in later stages of PDAC. To better elucidate the role of PTEN/PI3K/AKT signaling in Kras(G12D)-induced PDAC development, we crossed Pten conditional knockout mice (Pten(lox/lox)) to mice with conditional activation of Kras(G12D). The resulting compound heterozygous mutant mice showed significantly accelerated development of acinar-to-ductal metaplasia (ADM), malignant pancreatic intraepithelial neoplasia (mPanIN), and PDAC within a year. Moreover, all mice with Kras(G12D) activation and Pten homozygous deletion succumbed to cancer by 3 weeks of age. Our data support a dosage-dependent role for PTEN, and the resulting dysregulation of the PI3K/AKT signaling axis, in both PDAC initiation and progression, and shed additional light on the signaling mechanisms that lead to the development of ADM and subsequent mPanIN and pancreatic cancer.

Collaboration


Dive into the David W. Dawson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guido Eibl

University of California

View shared research outputs
Top Co-Authors

Avatar

Oscar J. Hines

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Joe Hines

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna R. Lay

University of California

View shared research outputs
Top Co-Authors

Avatar

Aune Moro

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge