Ligia Mateiu
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ligia Mateiu.
Nucleic Acids Research | 2013
Thierry Voet; Parveen Kumar; Peter Van Loo; Susanna L. Cooke; John J Marshall; Meng-Lay Lin; Masoud Zamani Esteki; Niels Van der Aa; Ligia Mateiu; David J. McBride; Graham R. Bignell; Stuart McLaren; Jon Teague; Adam Butler; Keiran Raine; Lucy Stebbings; Michael A. Quail; Thomas D’Hooghe; Yves Moreau; P. Andrew Futreal; Michael R. Stratton; J.R. Vermeesch; Peter J. Campbell
The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.
Nucleic Acids Research | 2013
Niels Van der Aa; Jiqiu Cheng; Ligia Mateiu; Masoud Zamani Esteki; Parveen Kumar; Eftychia Dimitriadou; Evelyne Vanneste; Yves Moreau; Joris Vermeesch; Thierry Voet
Single-cell genomics is revolutionizing basic genome research and clinical genetic diagnosis. However, none of the current research or clinical methods for single-cell analysis distinguishes between the analysis of a cell in G1-, S- or G2/M-phase of the cell cycle. Here, we demonstrate by means of array comparative genomic hybridization that charting the DNA copy number landscape of a cell in S-phase requires conceptually different approaches to that of a cell in G1- or G2/M-phase. Remarkably, despite single-cell whole-genome amplification artifacts, the log2 intensity ratios of single S-phase cells oscillate according to early and late replication domains, which in turn leads to the detection of significantly more DNA imbalances when compared with a cell in G1- or G2/M-phase. Although these DNA imbalances may, on the one hand, be falsely interpreted as genuine structural aberrations in the S-phase cell’s copy number profile and hence lead to misdiagnosis, on the other hand, the ability to detect replication domains genome wide in one cell has important applications in DNA-replication research. Genome-wide cell-type-specific early and late replicating domains have been identified by analyses of DNA from populations of cells, but cell-to-cell differences in DNA replication may be important in genome stability, disease aetiology and various other cellular processes.
PLOS ONE | 2013
Amanda Ramos; Cristina Santos; Ligia Mateiu; María del Mar González; Luis Alvarez; Luísa Azevedo; António Amorim; Maria Pilar Aluja
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields.
American Journal of Human Genetics | 2015
Masoud Zamani Esteki; Eftychia Dimitriadou; Ligia Mateiu; Cindy Melotte; Niels Van der Aa; Parveen Kumar; Rakhi Das; Koen Theunis; Jiqiu Cheng; Eric Legius; Yves Moreau; Sophie Debrock; Thomas D’Hooghe; Pieter Verdyck; Martine De Rycke; Karen Sermon; Joris Vermeesch; Thierry Voet
Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cells alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones.
Mitochondrion | 2011
Amanda Ramos; Elena Barbena; Ligia Mateiu; María del Mar González; Quim Mairal; Manuela Lima; Rafael Montiel; Maria Pilar Aluja; Cristina Santos
Nuclear insertions of mitochondrial origin (NUMTs) can be useful tools in evolution and population studies. However, due to their similarity to mitochondrial DNA (mtDNA), NUMTs may also be a source of contamination in mtDNA studies. The main goal of this work is to present a database of NUMTs, based on the latest version of the human genome-GRCh37 draft. A total of 755 insertions were identified. There are 33 paralogous sequences with over 80% sequence similarity and of a greater length than 500bp. The non-identical positions between paralogous sequences are listed for the first time. As an application example, the described database is used to evaluate the impact of NUMT contamination in cancer studies. The evaluation reveals that 220 positions from 256 with zero hits in the current mtDNA phylogeny could in fact be traced to one or more nuclear insertions of mtDNA. This is due to they are located in non-identical positions between mtDNA and nuclear DNA (nDNA). After in silico primer validation of each revised cancer study, risk of co-amplification between mtDNA and nDNA was detected in some cases, whereas in others no risk of amplification was identified. This approach to cancer studies clearly proves the potential of our NUMT database as a valuable new tool to validate mtDNA mutations described in different contexts. Moreover, due to the amount of information provided for each nuclear insertion, this database should play an important role in designing evolutionary, phylogenetic and epidemiological studies.
Electrophoresis | 2011
Amanda Ramos; Cristina Santos; Elena Barbena; Ligia Mateiu; Luis Alvarez; Ramon Nogués; Maria Pilar Aluja
A new human genome reference sequence – GRCh37 – was recently generated and made available by the Genome Reference Consortium. Since the prior disposable human reference sequence – hg18 – was previously used for the mitochondrial DNA primer BLAST validation, a revision of those previously published primer pairs is required. Thus, the aim of this Short Communication is to perform an in silico BLAST test of the published disposable nine primer pairs using the new human reference sequence and to report the pertinent modifications. The new analysis showed that one of the tested primer pairs requires a revision. Therefore, a new validated primer pair, which specifically amplifies the mitochondrial region located between positions 6520 and 9184, is presented.
Annals of Neurology | 2016
Kristien Peeters; Paulius Palaima; Ana L. Pelayo-Negro; Antonio García; Elena Gallardo; Rosario García-Barredo; Ligia Mateiu; Jonathan Baets; Björn Menten; Els De Vriendt; Vincent Timmerman; Jon Infante; José Berciano; Albena Jordanova
To identify the unknown genetic cause in a large pedigree previously classified with a distinct form of axonal Charcot–Marie–Tooth disease type 2G (CMT2G) and to explore its transcriptional consequences.
Acta neuropathologica communications | 2017
Thomas Geuens; Vicky De Winter; Nicholas Rajan Rajan; Tilmann Achsel; Ligia Mateiu; Leonardo Almeida-Souza; Bob Asselbergh; Delphine Bouhy; Michaela Auer-Grumbach; Claudia Bagni; Vincent Timmerman
The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor. Mutations inside the α-crystallin domain have been shown to enhance the chaperone activity of HSPB1 and increase the binding to client proteins. However, the HSPB1-P182L mutation, located outside and downstream of the α-crystallin domain, behaves differently. This specific HSPB1 mutation results in a severe neuropathy phenotype affecting exclusively the motor neurons of the peripheral nervous system. We identified that the HSPB1-P182L mutant protein has a specifically increased interaction with the RNA binding protein poly(C)binding protein 1 (PCBP1) and results in a reduction of its translational repressive activity. RNA immunoprecipitation followed by RNA sequencing on mouse brain lead to the identification of PCBP1 mRNA targets. These targets contain larger 3′- and 5′-UTRs than average and are enriched in an RNA motif consisting of the CTCCTCCTCCTCC consensus sequence. Interestingly, next to the clear presence of neuronal transcripts among the identified PCBP1 targets we identified known genes associated with hereditary peripheral neuropathies and hereditary spastic paraplegias. We therefore conclude that HSPB1 can mediate translational repression through interaction with an RNA binding protein further supporting its role in neurodegenerative disease.
Abstract book | 2015
Parveen Kumar; Niels Van der Aa; Masoud Zamani Esteki; Ligia Mateiu; Ryo Sakai; Koen Theunis; Jan Aerts; Thierry Voet
Abstract book | 2015
Masoud Zamani Esteki; Eftychia Dimitriadou; Ligia Mateiu; Cindy Melotte; Niels Van der Aa; Parveen Kumar; Rakhi Das; Koen Theunis; Jiqiu Cheng; Eric Legius; Yves Moreau; Sophie Debrock; Thomas D'Hooghe; Verdyck; M. De Rycke; Karen Sermon; Joris Vermeesch; Thierry Voet