Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lih-Rou Rau is active.

Publication


Featured researches published by Lih-Rou Rau.


PLOS ONE | 2013

Internalized Gold Nanoparticles Do Not Affect the Osteogenesis and Apoptosis of MG63 Osteoblast-Like Cells: A Quantitative, In Vitro Study

Shiao-Wen Tsai; Jiunn-Woei Liaw; Ya-Chen Kao; Meng-Yu Huang; Chia-Ying Lee; Lih-Rou Rau; Chiung-Yin Huang; Kuo-Chen Wei; Tzu-Chen Ye

The long-term toxicity effects of gold nanoparticles (GNPs) on the proliferation and differentiation of a progenitor cell line, MG63 osteoblast-like cells, was investigated. These cells were treated for 20 hours with two media that contained 10 nm GNPs at concentrations of 1 ppm and 10 ppm. The mitosis of the GNP-treated MG63 was observed after at least 21 hours using dark-field and fluorescence microscopy. The TEM, LSCM and dark-field hyperspectral images indicated that the late endosomes in cells that contained aggregated GNPs were caused by vesicle fusion. Subsequently, after 21 days of being cultured in fresh medium, the specific nodule-like phenotypes and bone-associated gene expression of the treated MG63 cells exhibited the same behaviors as those of the control group. Statistically, after 21 days, the viability of the treated cells was identical to that of the untreated ones. During the cell death program analysis, the apoptosis and necrosis percentages of cells treated for 8 or fewer days were also observed to exhibit no significant difference with those of the untreated cells. In summary, our experiments show that the long-term toxicity of GNPs on the osteogenetic differentiation of MG63 is low. In addition, because of their low toxicity and non-biodegradability, GNPs can potentially be used as biomarkers for the long-term optical observation of the differentiation of progenitor or stem cells based on their plasmonic light-scattering properties.


Journal of Nanomaterials | 2013

Electrospun hyaluronan-gelatin nanofibrous matrix for nerve tissue engineering

Hau-Min Liou; Lih-Rou Rau; Chun-Chiang Huang; Meng-Ru Lu; Fu-Yin Hsu

Schwann cells play a critical role in the repair of the peripheral nerve. The goal of this study was to fabricate electrospun gelatin (Gel) and hyaluronan-gelatin (HA-Gel) composite nanofibers to provide a suitable growth environment for Schwann cells. The fiber diameters of Gel, 0.5 HA-Gel, 1 HA-Gel, and 1.5 HA-Gel were 130 ± 30 nm, 294 ± 87 nm, 362 ± 129 nm, and 224 ± 54 nm, respectively. The biological performance of Gel and HA-Gel was evaluated using an in vitro culture of RT4-D6P2T rat Schwann cells. We found that the cell attachment and proliferation rates were not significantly different on these matrices. However, the Schwann cells displayed better organized F-actin on HA-Gel than on Gel. Moreover, the expression levels of several genes, including Nrg1, GFAP, and P0, were significantly higher on HA-Gel than on Gel. In addition, the levels of Nrg1 and P0 protein expression were also higher on the HA-Gel than on Gel. These results indicate that the hyaluronan-gelatin composite nanofibrous matrix could potentially be used in peripheral nerve repair.


International Journal of Nanomedicine | 2016

Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells.

Lih-Rou Rau; Wan-Yu Huang; Jiunn-Woei Liaw; Shiao-Wen Tsai

The specific properties of gold nanoparticles (AuNPs) make them a novel class of photothermal agents that can induce cancer cell damage and even death through the conversion of optical energy to thermal energy. Most relevant studies have focused on increasing the precision of cell targeting, improving the efficacy of energy transfer, and exploring additional functions. Nevertheless, most cells can uptake nanosized particles through nonspecific endocytosis; therefore, before hyperthermia via AuNPs can be applied for clinical use, it is important to understand the adverse optical–thermal effects of AuNPs on nontargeted cells. However, few studies have investigated the thermal effects induced by pulsed laser-activated AuNPs on nearby healthy cells due to nonspecific treatment. The aim of this study is to evaluate the photothermal effects induced by AuNPs plus a pulsed laser on MG63, an osteoblast-like cell line, specifically examining the effects on cell morphology, viability, death program, and differentiation. The cells were treated with media containing 50 nm AuNPs at a concentration of 5 ppm for 1 hour. Cultured cells were then exposed to irradiation at 60 mW/cm2 and 80 mW/cm2 by a Nd:YAG laser (532 nm wavelength). We observed that the cytoskeletons of MG63 cells treated with bare AuNPs followed by pulsed laser irradiation were damaged, and these cells had few bubbles on the cell membrane compared with those that were not treated (control) or were treated with AuNPs or the laser alone. There were no significant differences between the AuNPs plus laser treatment group and the other groups in terms of cell viability, death program analysis results, or alkaline phosphatase and calcium accumulation during culture for up to 21 days. However, the calcium deposit areas in the cells treated with AuNPs plus laser were larger than those in other groups during the early culture period.


Materials | 2016

Preparation of Nanofibrous Structure of Mesoporous Bioactive Glass Microbeads for Biomedical Applications

Shiao-Wen Tsai; Yu-Han Chang; Jing-Lun Yu; Hsien-Wen Hsu; Lih-Rou Rau; Fu-Yin Hsu

A highly ordered, mesoporous (pore size 2~50 nm) bioactive glass (MBG) structure has a greater surface area and pore volume and excellent bone-forming bioactivity compared with traditional bioactive glasses (BGs). Hence, MBGs have been used in drug delivery and bone tissue engineering. MBGs can be developed as either a dense or porous block. Compared with a block, microbeads provide greater flexibility for filling different-shaped cavities and are suitable for culturing cells in vitro. In contrast, the fibrous structure of a scaffold has been shown to increase cell attachment and differentiation due to its ability to mimic the three-dimensional structure of natural extracellular matrices. Hence, the aim of this study is to fabricate MBG microbeads with a fibrous structure. First, a sol-gel/electrospinning technique was utilized to fabricate the MBG nanofiber (MBGNF) structure. Subsequently, the MBGNF microbeads (MFBs) were produced by an electrospraying technology. The results show that the diameter of the MFBs decreases when the applied voltage increases. The drug loading and release profiles and mechanisms of the MFBs were also evaluated. MFBs had a better drug entrapment efficiency, could reduce the burst release of tetracycline, and sustain the release over 10 days. Hence, the MFBs may be suitable drug carriers. In addition, the cellular attachment of MG63 osteoblast-like cells is significantly higher for MFBs than for glass microbeads after culturing for 4 h. The nanofibrous structure of MFBs could provide an appropriate environment for cellular spreading. Therefore, MFBs have great potential for use as a bone graft material in bone tissue engineering applications.


Journal of Nanomaterials | 2014

Fabrication of aligned carbon nanotube/polycaprolactone/gelatin nanofibrous matrices for schwann cell immobilization

Shiao-Wen Tsai; Chun-Chiang Huang; Lih-Rou Rau; Fu-Yin Hsu

In this study, we utilized a mandrel rotating collector consisting of two parallel, electrically conductive pieces of tape to fabricate aligned electrospun polycaprolactone/gelatin (PG) and carbon nanotube/polycaprolactone/gelatin (PGC) nanofibrous matrices. Furthermore, we examined the biological performance of the PGC nanofibrous and film matrices using an in vitro culture of RT4- D6P2T rat Schwann cells. Using cell adhesion tests, we found that carbon nanotube inhibited Schwann cell attachment on PGC nanofibrous and film matrices. However, the proliferation rates of Schwann cells were higher when they were immobilized on PGC nanofibrous matrices compared to PGC film matrices. Using western blot analysis, we found that NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PG nanofibrous matrices. However, the carbon nanotube inhibited NRG1 and P0 protein expression in cells immobilized on PGC film matrices. Moreover, the NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PGC film matrices. We found that the matrix topography and composition influenced Schwann cell behavior.


Biomacromolecules | 2016

Selective Targeting and Restrictive Damage for Nonspecific Cells by Pulsed Laser-Activated Hyaluronan-Gold Nanoparticles

Lih-Rou Rau; Shu-Wei Tsao; Jiunn-Woei Liaw; Shiao-Wen Tsai

Herein, we describe an approach that immobilizes low-molecular-weight hyaluronic acid (low-MW HA) on the surface of gold nanoparticles (GNPs), which can serve as a cellular probe and photodamage media, to evaluate the selectivity and efficiency of HA-based GNPs (HGNPs) as a mediator of laser-induced photothermal cell damage. In addition, it is known that solid tumors contain a higher content of low-MW HA than normal tissues. Thus, we used low-MW HA rather than high-MW HA used in other studies. In the present study, we conjugated low-MW HA, which is a linear polysaccharide with a disaccharide repeat unit, to prevent a reduction of the ligand-receptor binding efficiency in contrast to the conjugation of protein or peptides, which have unique three-dimensional structures. Three cell lines-MDA-MB-435 S (with CD44), MDA-MB-453 and NIH/3T3 (both are without CD44)-were investigated in the study, and qualitative observations were conducted by dark-field microscopy and laser scanning confocal microscopy (LSCM). In addition, quantitative measurements calculated using inductively coupled plasma emissions were taken for comparison. Our results showed that within the same treatment time, the uptake dosage of HGNPs by the MDA-MB-435 S cells was higher than that by the MDA-MB-453 and NIH 3T3 cells. Meanwhile, HGNPs uptake by the untreated MDA-MB-435 S cells was higher than that of MDA-MB-435 S cells with CD44 blocked by antibodies or silencing CD44 expression. This result implies that receptor-mediated endocytosis can enhance the cellular uptake of HGNPs. In addition, when exposed to a low-power pulsed laser, the former cell morphologies showed a more laser-induced giant plasma membrane vesicles (GPMV) than the latter morphologies. Therefore, this study utilized the specific photothermal property of HA-modified GNPs with laser-induced blebs to create a possible new method for medical applications.


Biofabrication | 2015

External vibration enhances macromolecular crowding for construction of aligned three-dimensional collagen fibril scaffolds.

Hsiao-Ting Hsu; Lih-Rou Rau; Yao-Nan Zeng; Yi-Lin Kang; Shiao-Wen Tsai; Min-Hsien Wu

There are many techniques for preparing two-dimensional aligned fibril matrices. However, the critical problem associated with these techniques is the destruction of the native structure (e.g., the α-helix) of the proteins. Moreover, most of these techniques cannot create a three-dimensional (3D), aligned reconstituted collagen fibril matrix in one step. In this study, we used a simple device composed of a pneumatic membrane that generates a tunable vibration frequency to apply physical stimulation to fabricate a 3D, aligned collagen fibril matrix with the characteristic D-period structure of collagen in one step. Using second harmonic images, we demonstrated that the aligned, reconstituted collagen fibrils preserve the native collagen D-period structure. The average angular deviation of fibril alignment was reduced to 25.01 ± 4.2° compared with the 39.7 ± 2.19° of alignment observed for the randomly distributed fibril matrix. In addition, the ultimate tensile strength of the aligned matrix when force was applied in the direction parallel to the fiber orientation was higher than that of the randomly oriented matrix. The aligned reconstituted collagen fibril matrix also enhanced the expression of smoothelin (a specific marker of contractile phenotype) of thoracic aortic smooth muscle cell (A7r5) relative to the randomly distributed collagen fibril matrix.


Materials Science and Engineering: C | 2018

Macroporous microbeads containing apatite-modified mesoporous bioactive glass nanofibres for bone tissue engineering applications

Fu-Yin Hsu; Hsien-Wen Hsu; Yu-Han Chang; Jing-Lun Yu; Lih-Rou Rau; Shiao-Wen Tsai

Mesoporous bioactive glass (MBG) has a greater surface area and pore volume than conventional BG. Hence, MBG is useful as a drug delivery carrier. Previously, MBG has been fabricated as dense or porous blocks. Compared to blocks, microbeads have a greater flexibility to fill different-shaped cavities with close packing. Moreover, fibrous materials have proven to increase cell attachment and differentiation because they mimic the three-dimensional structure of the natural extracellular matrix (ECM). Macroporous materials possess porous structures with interconnecting channels that allow the invasive growth of cells and capillaries. Hence, the aim of this study was to fabricate macroporous microbeads containing MBG nanofibres (MMBs). We used poly(methyl methacrylate) (PMMA) microspheres as the macroporous template in the process and removed the PMMA microspheres after the calcination treatment. Scanning electron microscopy imaging showed multiple pores on the surface of the MMBs, and a micro-computed tomography image showed the presence of pores throughout the entire microbead. The cellular attachment of MG63 osteoblast-like cells was considerably higher on the MMBs than on glass beads after culturing for 4 h. However, the cell viability greatly decreased after culturing for 1 day. We speculated that the release of a high concentration of calcium ions from the MMBs decreased the cell viability. To improve the cell viability, we modified the MMBs by immersing the MMBs in a simulated body fluid to fabricate a thin apatite layer on the surface of the MMBs. The apatite-modified MMBs (Ap-MMB) decreased the release of calcium ions and improved the cell viability. In an animal study, the bone defect in the control group did not recover. In contrast to the control group, the Ap-MMBs in the defect were nearly filled with new bone. The results show that the Ap-MMBs have great potential in osteogenesis for bone tissue engineering.


Biomedical Materials | 2017

Construction of cell-containing, anisotropic, three-dimensional collagen fibril scaffolds using external vibration and their influence on smooth muscle cell phenotype modulation

Yao-Nan Zeng; Yi-Lin Kang; Lih-Rou Rau; Fu-Yin Hsu; Shiao-Wen Tsai

Numerous methods have been developed for preparing guiding channels/tracks to promote the alignment of highly oriented cell types. However, these manufacture methods cannot fabricate interconnected guiding channels within three-dimensional (3D) scaffolds. Providing a suitable architectural scaffold for cell attachment could lead cells to more rapidly display a desired phenotype and perform their unique functions. Previously, we developed a simple device composed of a pneumatic membrane that can generate a tunable vibration frequency to apply physical stimulation for fabricating a 3D aligned collagen fibril matrix with the characteristic D-period structure in one step. In the present study, we aimed to evaluate the cellular responses of thoracic aortic smooth muscle cells (A7r5) incorporated during the fabrication of 3D-aligned collagen fibrils with D-periods and compared these cells with those incorporated in a 3D, randomly distributed collagen matrix and in a two-dimensional (2D) aligned substrate after up to 10 days of culture. The results consistently demonstrated that A7r5 cells cultured within the 3D and 2D anisotropic matrices were aligned. Cells cultured in the 3D aligned scaffolds exhibited a higher proliferation rate as well as higher F-actin and smoothelin expression levels compared with cells cultured in 3D randomly distributed scaffolds. Together, these results indicate that a 3D-reconstituted, anisotropic collagen matrix fabricated by our process provides synergistic effects of tension stimulation and matrix stiffness on encapsulated cells and can direct A7r5 cells to transform from a synthetic phenotype into a contractile state.


Nanoscience and Nanotechnology Letters | 2016

Biocompatibility Analysis of NIH/3T3 Cells Exposed to Silica-Coated Silver and Silver Nanoparticles

Chen-En Lin; Lih-Rou Rau; Jiunn-Woei Liaw; Fu-Yin Hsu; Shiao-Wen Tsai

Collaboration


Dive into the Lih-Rou Rau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fu-Yin Hsu

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chun-Chiang Huang

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Hsien-Wen Hsu

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Jing-Lun Yu

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hau-Min Liou

National Taiwan Ocean University

View shared research outputs
Researchain Logo
Decentralizing Knowledge