Lilian Blanc
Empresa Brasileira de Pesquisa Agropecuária
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lilian Blanc.
Science | 2009
Oliver L. Phillips; Luiz E. O. C. Aragão; Simon L. Lewis; Joshua B. Fisher; Jon Lloyd; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Abel Monteagudo; J. Peacock; Carlos A. Quesada; Geertje M.F. van der Heijden; Samuel Almeida; Iêda Leão do Amaral; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Olaf Banki; Lilian Blanc; Damien Bonal; Paulo M. Brando; Jérôme Chave; Atila Alves de Oliveira; Nallaret Dávila Cardozo; Claudia I. Czimczik; Ted R. Feldpausch; Maria Aparecida Freitas; Emanuel Gloor; Niro Higuchi; Eliana M. Jimenez; Gareth Lloyd
Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.
New Phytologist | 2010
Oliver L. Phillips; Geertje M.F. van der Heijden; Simon L. Lewis; Gabriela Lopez-Gonzalez; Luiz E. O. C. Aragão; Jon Lloyd; Yadvinder Malhi; Abel Monteagudo; Samuel Almeida; Esteban Álvarez Dávila; Iêda Leão do Amaral; Sandy Andelman; Ana Andrade; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Lilian Blanc; Damien Bonal; Atila Alves de Oliveira; Kuo-Jung Chao; Nallaret Dávila Cardozo; Lola Da Costa; Ted R. Feldpausch; Joshua B. Fisher; Nikolaos M. Fyllas; Maria Aparecida Freitas; David Galbraith; Emanuel Gloor; Niro Higuchi; Eurídice N. Honorio
*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.
Proceedings of the National Academy of Sciences of the United States of America | 2015
J. W. Ferry Slik; Víctor Arroyo-Rodríguez; Shin-ichiro Aiba; Patricia Alvarez-Loayza; Luciana F. Alves; Peter S. Ashton; Patricia Balvanera; Meredith L. Bastian; Peter J. Bellingham; Eduardo van den Berg; Luís Carlos Bernacci; Polyanna da Conceição Bispo; Lilian Blanc; Katrin Böhning-Gaese; Pascal Boeckx; Frans Bongers; Brad Boyle; M. Bradford; Francis Q. Brearley; Mireille Breuer-Ndoundou; Sarayudh Bunyavejchewin; Darley Calderado; Leal Matos; Miguel Castillo-Santiago; Eduardo Luís Martins Catharino; Shauna-Lee Chai; Yukai Chen; Eizi Suzuki; Natália Targhetta; Duncan W. Thomas
Significance People are fascinated by the amazing diversity of tropical forests and will be surprised to learn that robust estimates of the number of tropical tree species are lacking. We show that there are at least 40,000, but possibly more than 53,000, tree species in the tropics, in contrast to only 124 across temperate Europe. Almost all tropical tree species are restricted to their respective continents, and the Indo-Pacific region appears to be as species-rich as tropical America, with each of these two regions being almost five times as rich in tree species as African tropical forests. Our study shows that most tree species are extremely rare, meaning that they may be under serious risk of extinction at current deforestation rates. The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
Ecological Applications | 2009
Lilian Blanc; Marion Echard; Bruno Hérault; Damien Bonal; Eric Marcon; Jérôme Chave; Christopher Baraloto
The expansion of selective logging in tropical forests may be an important source of global carbon emissions. However, the effects of logging practices on the carbon cycle have never been quantified over long periods of time. We followed the fate of more than 60 000 tropical trees over 23 years to assess changes in aboveground carbon stocks in 48 1.56-ha plots in French Guiana that represent a gradient of timber harvest intensities, with and without intensive timber stand improvement (TSI) treatments to stimulate timber tree growth. Conventional selective logging led to emissions equivalent to more than a third of aboveground carbon stocks in plots without TSI (85 Mg C/ha), while plots with TSI lost more than one-half of aboveground carbon stocks (142 Mg C/ha). Within 20 years of logging, plots without TSI sequestered aboveground carbon equivalent to more than 80% of aboveground carbon lost to logging (-70.7 Mg C/ha), and our simulations predicted an equilibrium aboveground carbon balance within 45 years of logging. In contrast, plots with intensive TSI are predicted to require more than 100 years to sequester aboveground carbon lost to emissions. These results indicate that in some tropical forests aboveground carbon storage can be recovered within half a century after conventional logging at moderate harvest intensities.
Ecology | 2007
Christopher Baraloto; François Morneau; Damien Bonal; Lilian Blanc; Bruno Ferry
We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera (Myristicaceae), Symphonia (Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings (stems >150 cm in height and <10 cm diameter at breast height [dbh]) and trees (stems > or =10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas (where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modification of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.
IEEE Transactions on Geoscience and Remote Sensing | 2012
Pascale Dubois-Fernandez; Thuy Le Toan; Sandrine Daniel; Hélène Oriot; Jérôme Chave; Lilian Blanc; Ludovic Villard; Malcolm Davidson; Michel Petit
The TropiSAR campaign has been conducted in August 2009 in French Guiana with the ONERA airborne radar system SETHI. The main objective of this campaign was to collect data to support the Phase A of the 7th Earth Explorer candidate mission, BIOMASS. Several specific questions needed to be addressed to consolidate the mission concept following the Phase 0 studies, and the data collection strategy was constructed accordingly. More specifically, a tropical forest data set was required in order to provide test data for the evaluation of the foreseen inversion algorithms and data products. The paper provides a description of the resulting data set which is now available through the European Space Agency website under the airborne campaign link. First results from the TropiSAR database analysis are presented with two in-depth analyses about both the temporal radiometric variation and temporal coherence at P-band. The temporal variations of the backscatter values are less than 0.5 dB throughout the campaign, and the coherence values are observed to stay high even after 22 days. These results are essential for the BIOMASS mission. The observed temporal stability of the backscatter is a good indicator of the expected robustness of the biomass estimation in tropical forests, from cross-polarized backscatter values as regarding environmental changes such as soil moisture. The high temporal coherence observed after a 22-day period is a prerequisite for SAR Polarimetric Interferometry and Tomographic applications in a single satellite configuration. The conclusion then summarizes the paper and identifies the next steps in the analysis.
Current Biology | 2015
Ervan Rutishauser; Bruno Hérault; Christopher Baraloto; Lilian Blanc; Laurent Descroix; Eleneide Doff Sotta; Joice Ferreira; Milton Kanashiro; Lucas Mazzei; Marcus Vinicio Neves d’Oliveira; Luís Cláudio de Oliveira; Marielos Peña-Claros; Francis E. Putz; Ademir Roberto Ruschel; Ken Rodney; Anand Roopsind; Alexander Shenkin; Kátia Emídio da Silva; Cintia Rodrigues de Souza; Marisol Toledo; Edson Vidal; Thales A.P. West; Verginia Wortel; Plinio Sist
While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions.While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production [1] . Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity [2,3] . Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al. [4] found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin [5] to assess the main drivers of time-to-recovery of post-logging tree carbon ( Table S1 ). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions.
international geoscience and remote sensing symposium | 2010
Pascale Dubois-Fernandez; Helene Oriot; Colette Coulombeix; Hubert Cantalloube; Olivier Ruault du Plessis; Thuy Le Toan; Sandrine Daniel; Jérôme Chave; Lilian Blanc; Malcolm Davidson; Michel Petit
The TropiSAR campaign has been conducted in August 2009 in French Guiana with the ONERA airborne system SETHI. The main objective of this campaign was to collect data to support the Phase A of the Earth Explorer candidate mission, Biomass. Several specific questions need to be addressed to answer the recommendations of the ESAC group and the data collection strategy has been constructed accordingly. The first part of the paper lists these specific questions. We then describe the selected test sites, followed by a summary on the radar instrument and the radar configuration (geometry and waveform). The data acquisition plan is provided and the temporal behaviour of the P-Band data is explored.
Scientific Reports | 2017
Oriol Grau; Josep Peñuelas; Bruno Ferry; Vincent Freycon; Lilian Blanc; Mathilde Desprez; Christopher Baraloto; Jérôme Chave; Laurent Descroix; Aurélie Dourdain; Stéphane Guitet; Ivan A. Janssens; Jordi Sardans; Bruno Hérault
Tropical forests store large amounts of biomass despite they generally grow in nutrient-poor soils, suggesting that the role of soil characteristics in the structure and dynamics of tropical forests is complex. We used data for >34 000 trees from several permanent plots in French Guiana to investigate if soil characteristics could predict the structure (tree diameter, density and aboveground biomass), and dynamics (growth, mortality, aboveground wood productivity) of nutrient-poor tropical forests. Most variables did not covary with site-level changes in soil nutrient content, indicating that nutrient-cycling mechanisms other than the direct absorption from soil (e.g. the nutrient uptake from litter, the resorption, or the storage of nutrients in the biomass), may strongly control forest structure and dynamics. Ecosystem-level adaptations to low soil nutrient availability and long-term low levels of disturbance may help to account for the lower productivity and higher accumulation of biomass in nutrient-poor forests compared to nutrient-richer forests.
Environmental Evidence | 2015
Gillian Petrokofsky; Plinio Sist; Lilian Blanc; Jean-Louis Doucet; B. Finegan; Sylvie Gourlet-Fleury; J.R. Healey; Barbara Livoreil; Robert Nasi; Marielos Peña-Claros; Francis E. Putz; Wen Zhou
BackgroundCurrently, about 400 million hectares of tropical moist forests worldwide are designated production forests, about a quarter of which are managed by rural communities and indigenous peoples. There has been a gradual impoverishment of forest resources inside selectively logged forests in which the volume of timber extracted over the first cutting cycle was mostly from large, old trees that matured over a century or more and grew in the absence of strong anthropological pressures. In forests now being logged for a second and third time, that volume has not been reconstituted due in part to the lack of implementation of post-logging silvicultural treatments. This depletion of timber stocks renders the degraded forests prone to conversion to other land uses. Although it is essential to preserve undisturbed primary forests through the creation of protected areas, these areas alone will not be able to ensure the conservation of all species on a pan-tropical scale, for social, economic and political reasons. The conservation of tropical forests of tomorrow will mostly take place within human-modified (logged, domesticated) forests. In this context, silvicultural interventions are considered by many tropical foresters and forest ecologists as tools capable of effectively conserving tropical forest biodiversity and ecosystem services while stimulating forest production. This systematic review aims to assess past and current evidence of the impact of silviculture on tropical forests and to identify silvicultural practices appropriate for the current conditions in the forests and forestry sectors of the Congo Basin, Amazonia and Southeast Asia.MethodsThis systematic review will undertake an extensive search of literature to assess the relative effectiveness of different silvicultural interventions on timber production and the conservation value of forests, and to determine whether there is a relationship between sustainability of timber harvesting and the maintenance/conservation of other ecosystem services and biodiversity in production forests. Data will be extracted for meta-analysis of at least sub-sets of the review questions. Findings are expected to help inform policy and develop evidence-based practice guidelines on silvicultural practices in tropical forests.
Collaboration
Dive into the Lilian Blanc's collaboration.
Centre de coopération internationale en recherche agronomique pour le développement
View shared research outputsCentre de coopération internationale en recherche agronomique pour le développement
View shared research outputs