Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lilian Varricchio is active.

Publication


Featured researches published by Lilian Varricchio.


Cell Transplantation | 2010

Humanized culture medium for clinical expansion of human erythroblasts.

Giovanni Migliaccio; Massimo Sanchez; Francesca Masiello; Valentina Tirelli; Lilian Varricchio; Carolyn Whitsett; Anna Rita Migliaccio

Ex vivo-generated erythroblasts represent alternative transfusion products. However, inclusion of bovine components in media used for their growth precludes clinical use, highlighting the importance of developing culture media based on pharmaceutical grade reagents. In addition, because adult blood generates ex vivo lower numbers of erythroblasts than cord blood, cord blood has been proposed as the source of choice for ex vivo erythroblast production. To clarify the potential of adult blood to generate erythroblasts ex vivo, experiments were designed to identify growth factors [stem cell factor (SCF), interleukin-3 (IL-3), erythropoietin (EPO), and/or thrombopoietin (TPO)] and the optimal concentration and addition schedule of hormones (dexamethasone and estradiol) sustaining maximal erythroid amplification from adult blood mononuclear cells (MNC) using media with serum previously defined as human erythroid massive amplification culture (HEMAser). Adult MNC stimulated with SCF and IL-3 in combination with EPO generated a 6–12-fold increase in erythroid cells while TPO was ineffective. Dexamethasone and estradiol (both at 10−6 M) exerted partially overlapping but nonredundant functions. Dexamethasone was indispensable in the first 10 days of culture while estradiol was required from day 10 on. The growth factor and hormone combinations identified in HEMAser were then used to formulate a media composed of dialyzed pharmaceutical grade human albumin, human albumin-lipid liposomes, and iron-saturated recombinant human tranferrin (HEMAdef). HEMAdef sustained erythroid amplification as efficiently as HEMAser for cord blood MNC and 10-fold higher than HEMAser for adult blood MNC. In fact, the numbers of erythroblasts generated in HEMAdef by adult MNC were similar to those generated by cord blood MNC. In conclusion, this study identifies growth factors, hormone combinations, and human protein-based media that allow similar levels of ex vivo erythroid expansion from adult and cord blood MNC, paving the way to evaluate adult blood as a source of ex vivo-expanded erythroblasts for transfusion.


Blood | 2011

The dominant negative β isoform of the glucocorticoid receptor is uniquely expressed in erythroid cells expanded from polycythemia vera patients

Lilian Varricchio; Elena Masselli; Elena Alfani; Angela Battistini; Giovanni Migliaccio; Alessandro M. Vannucchi; Wenyong Zhang; Damiano Rondelli; James Godbold; Barbara Ghinassi; Carolyn Whitsett; Ronald Hoffman; Anna Rita Migliaccio

Glucocorticoid receptor (GR) agonists increase erythropoiesis in vivo and in vitro. To clarify the effect of the dominant negative GRβ isoform (unable to bind STAT-5) on erythropoiesis, erythroblast (EB) expansion cultures of mononuclear cells from 18 healthy (nondiseased) donors (NDs) and 16 patients with polycythemia vera (PV) were studied. GRβ was expressed in all PV EBs but only in EBs from 1 ND. The A3669G polymorphism, which stabilizes GRβ mRNA, had greater frequency in PV (55%; n = 22; P = .0028) and myelofibrosis (35%; n = 20) patients than in NDs (9%; n = 22) or patients with essential thrombocythemia (6%; n = 15). Dexamethasone stimulation of ND cultures increased the number of immature EBs characterized by low GATA1 and β-globin expression, but PV cultures generated great numbers of immature EBs with low levels of GATA1 and β-globin irrespective of dexamethasone stimulation. In ND EBs, STAT-5 was not phosphorylated after dexamethasone and erythropoietin treatment and did not form transcriptionally active complexes with GRα, whereas in PV EBs, STAT-5 was constitutively phosphorylated, but the formation of GR/STAT-5 complexes was prevented by expression of GRβ. These data indicate that GRβ expression and the presence of A3669G likely contribute to development of erythrocytosis in PV and provide a potential target for identification of novel therapeutic agents.


Blood | 2015

2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment

Alister P.W. Funnell; Paolo Prontera; Valentina Ottaviani; Maria Piccione; Antonino Giambona; Aurelio Maggio; Fiorella Ciaffoni; Sandra Stehling-Sun; Manuela Marra; Francesca Masiello; Lilian Varricchio; John A. Stamatoyannopoulos; Anna Rita Migliaccio; Thalia Papayannopoulou

Elevated fetal hemoglobin (HbF) ameliorates the clinical severity of hemoglobinopathies such as β-thalassemia and sickle cell anemia. Currently, the only curative approach for individuals under chronic transfusion/chelation support therapy is allogeneic stem cell transplantation. However, recent analyses of heritable variations in HbF levels have provided a new therapeutic target for HbF reactivation: the transcriptional repressor BCL11A. Erythroid-specific BCL11A abrogation is now actively being sought as a therapeutic avenue, but the specific impact of such disruption in humans remains to be determined. Although single nucleotide polymorphisms in BCL11A erythroid regulatory elements have been reported, coding mutations are scarcer. It is thus of great interest that patients have recently been described with microdeletions encompassing BCL11A. These patients display neurodevelopmental abnormalities, but whether they show increased HbF has not been reported. We have examined the hematological phenotype, HbF levels, and erythroid BCL11A expression in 3 such patients. Haploinsufficiency of BCL11A induces only partial developmental γ-globin silencing. Of greater interest is that a patient with a downstream deletion exhibits reduced BCL11A expression and increased HbF. Novel erythroid-specific regulatory elements in this region may be required for normal erythroid BCL11A expression, whereas loss of separate elements in the developing brain may explain the neurological phenotype.


Expert Review of Hematology | 2009

Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis

Lilian Varricchio; Annalisa Mancini; Anna Rita Migliaccio

Primary myelofibrosis (PMF) belongs to the Philadelphia-negative myeloproliferative neoplasms and is a hematological disorder caused by abnormal function of the hematopoietic stem cells. The disease manifests itself with a plethora of alterations, including anemia, splenomegaly and extramedullary hematopoiesis. Its hallmarks are progressive marrow fibrosis and atypical megakaryocytic hyperplasia, two distinctive features used to clinically monitor disease progression. In an attempt to investigate the role of abnormal megakaryocytopoiesis in the pathogenesis of PMF, several transgenic mouse models have been generated. These models are based either on mutations that interfere with the extrinsic (thrombopoietin and its receptor, MPL) and intrinsic (the GATA1 transcription factor) control of normal megakaryocytopoiesis, or on known genetic lesions associated with the human disease. Here we provide an up-to-date review on the insights into the pathobiology of human PMF achieved by studying these animal models, with particular emphasis on results obtained with Gata1low mice.


Blood Reviews | 2012

Ex-vivo expansion of red blood cells: How real for transfusion in humans?

Anna Rita Migliaccio; Elena Masselli; Lilian Varricchio; Carolyn Whitsett

Blood transfusion is indispensable for modern medicine. In developed countries, the blood supply is adequate and safe but blood for alloimmunized patients is often unavailable. Concerns are increasing that donations may become inadequate in the future as the population ages prompting a search for alternative transfusion products. Improvements in culture conditions and proof-of-principle studies in animal models have suggested that ex-vivo expanded red cells may represent such a product. Compared to other cell therapies transfusion poses the unique challenge of requiring great cell doses (2.5×10(12) cells vs 10(7) cells). Although production of such cell numbers is theoretically possible, current technologies generate red cells in numbers sufficient only for safety studies. It is conceived that by the time these studies will be completed, technical barriers to mass cell production will have been eliminated making transfusion with ex-vivo generated red cells a reality.


Haematologica | 2015

Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

Mario Falchi; Lilian Varricchio; Fabrizio Martelli; Francesca Masiello; Giulia Federici; Maria Zingariello; Gabriella Girelli; Carolyn Whitsett; Emanuel F. Petricoin; Søren K. Moestrup; Ann Zeuner; Anna Rita Migliaccio

Cultures of human CD34pos cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169pos macrophages established multiple rapid ‘loose’ interactions with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169neg macrophages established ‘tight’ interactions with mature erythroblasts and phagocytosed these cells. ‘Loose’ interactions of CD169pos macrophages were associated with proerythroblast cytokinesis (the M phase of the cell cycle) suggesting that these interactions may promote proerythroblast duplication. This hypothesis was tested by experiments that showed that as few as 103 macrophages significantly increased levels of 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide incorporation frequency in S/G2/M and cytokinesis expressed by proerythroblasts over 24 h of culture. These effects were observed also when macrophages were co-cultured with dexamethasone directly conjugated to a macrophage-specific CD163 antibody. In conclusion, in addition to promoting proerythroblast proliferation directly, dexamethasone stimulates expansion of these cells indirectly by stimulating maturation and cytokinesis supporting activity of macrophages.


Blood Cells Molecules and Diseases | 2011

Under HEMA conditions, self-replication of human erythroblasts is limited by autophagic death☆

Giovanni Migliaccio; Francesca Masiello; Valentina Tirelli; Massimo Sanchez; Lilian Varricchio; Carolyn Whitsett; Anna Rita Migliaccio

The number of erythroblasts generated ex-vivo under human-erythroid massive-amplification conditions by mononuclear cells from one unit of adult blood (~10(10)) are insufficient for transfusion (~10(12) red cells), emphasizing the need for studies to characterize cellular interactions during culture to increase erythroblast production. To identify the cell populations which generate erythroblasts under human-erythroid-massive-amplification conditions and the factors that limit proliferation, day 10 non-erythroblasts and immature- and mature-erythroblasts were separated by sorting, labelled with carboxyfluorescein-diacetate-succinimidyl-ester and re-cultured either under these conditions (for proliferation, maturation and/or apoptosis/autophagy determinations) or in semisolid media (for progenitor cell determination). Non-erythroblasts contained 54% of the progenitor cells but did not grow under human-erythroid-massive-amplification conditions. Immature-erythroblasts contained 25% of the progenitor cells and generated erythroblasts under human-erythroid-massive-amplification conditions (FI at 48 h=2.57±1.15). Mature-erythroblasts did not generate colonies and died in human-erythroid-massive-amplification conditions. In sequential sorting/re-culture experiments, immature-erythroblasts retained the ability to generate erythroblasts for 6 days and generated 2-5-fold more cells than the corresponding unfractionated population, suggesting that mature-erythroblasts may limit erythroblast expansion. In co-cultures of carboxyfluorescein-diacetate-succinimidyl-ester-labelled-immature-erythroblasts with mature-erythroblasts at increasing ratios, cell numbers did not increase and proliferation, maturation and apoptotic rates were unchanged. However, Acridine Orange staining (a marker for autophagic death) increased from ~3.2% in cultures with immature-erythroblasts alone to 14-22% in cultures of mature-erythroblasts with and without immature-erythroblasts. In conclusion, these data identify immature-erythroblasts as the cells that generate additional erythroblasts in human-erythroid-massive-amplification cultures and autophagy as the leading cause of death limiting the final cellular output of these cultures.


Blood Cells Molecules and Diseases | 2015

Activation of non-canonical TGF-β1 signaling indicates an autoimmune mechanism for bone marrow fibrosis in primary myelofibrosis

Fiorella Ciaffoni; Elena Cassella; Lilian Varricchio; Margherita Massa; Giovanni Barosi; Anna Rita Migliaccio

Primary myelofibrosis (PMF) is characterized by megakaryocyte hyperplasia, dysplasia and death with progressive reticulin/collagen fibrosis in marrow and hematopoiesis in extramedullary sites. The mechanism of fibrosis was investigated by comparing TGF-β1 signaling of marrow and spleen of patients with PMF and of non-diseased individuals. Expression of 39 (23 up-regulated and 16 down-regulated) and 38 (8 up-regulated and 30 down-regulated) TGF-β1 signaling genes was altered in the marrow and spleen of PMF patients, respectively. Abnormalities included genes of TGF-β1 signaling, cell cycling and abnormal in chronic myeloid leukemia (EVI1 and p21(CIP)) (both marrow and spleen) and Hedgehog (marrow only) and p53 (spleen only) signaling. Pathway analyses of these alterations predict an increased osteoblast differentiation, ineffective hematopoiesis and fibrosis driven by non-canonical TGF-β1 signaling in marrow and increased proliferation and defective DNA repair in spleen. Since activation of non-canonical TGF-β1 signaling is associated with fibrosis in autoimmune diseases, the hypothesis that fibrosis in PMF results from an autoimmune process triggered by dead megakaryocytes was tested by determining that PMF patients expressed plasma levels of mitochondrial DNA and anti-mitochondrial antibodies greater than normal controls. These data identify autoimmunity as a possible cause of marrow fibrosis in PMF.


American Journal of Hematology | 2013

Transcriptomic and phospho-proteomic analyzes of erythroblasts expanded in vitro from normal donors and from patients with polycythemia vera.

Todd Hricik; Giulia Federici; Ann Zeuner; Giuliana Alimena; Agostino Tafuri; Valentina Tirelli; Lilian Varricchio; Francesca Masiello; Fiorella Ciaffoni; Stefania Vaglio; Emanuel F. Petricoin; Gabriella Girelli; Ross L. Levine; Anna Rita Migliaccio

Erythropoiesis is a tightly regulated process which becomes decoupled from its normal differentiation program in patients with polycythemia vera (PV). Somatic mutations in JAK2 are commonly associated with this myeloid proliferative disorder. To gain insight into the molecular events that are required for abnormally developing erythroid cells to escape dependence on normal growth signals, we performed in vitro expansion of mature erythroblasts (ERY) from seven normal healthy donors and from seven polycythemic patients in the presence of IL3, EPO, SCF for 10, 11, or 13 days. Normal ERYs required exposure to the glucocorticoid dexamethasone (Dex) for expansion, while PV‐derived ERYs expanded in the absence of dexamethasone. RNA expression profiling revealed enrichment of two known oncogenes, GPR56 and RAB4a, in PV‐derived ERYs along with reduced expression levels of transcription factor TAL1 (ANOVA FDR < 0.05). While both normal and polycythemic‐derived ERYs integrated signaling cascades for growth, they did so via different signaling pathways which are represented by their differential phospho‐profiles. Our results show that normal ERYs displayed greater levels of phosphorylation of EGFR, PDGFRβ, TGFβ, and cKit, while PV‐derived ERYs were characterized by increased phosphorylation of cytoplasmic kinases in the JAK/STAT, PI3K, and GATA1 pathways. Together these data suggest that PV erythroblast expansion and maturation may be maintained and enriched in the absence of dexamethasone through reduced TAL1 expression and by accessing additional signaling cascades. Members of this acquired repertoire may provide important insight into the pathogenesis of aberrant erythropoiesis in myeloproliferative neoplasms such as polycythemia vera. Am. J. Hematol. 88:723–729, 2013.


Stem Cells and Development | 2012

The Expression of the Glucocorticoid Receptor in Human Erythroblasts is Uniquely Regulated by KIT Ligand: Implications for Stress Erythropoiesis

Lilian Varricchio; Tirelli; Elena Masselli; Barbara Ghinassi; Besmer P; Anna Rita Migliaccio

Studies in mice indicated that activation of the erythroid stress pathway requires the presence of both soluble KIT ligand (KITL) and the glucocorticoid receptor (GR). To clarify the relative role of KITL and GR in stress erythropoiesis in humans, the biological activities of soluble full length- (fl-, 26-190 aa), carboxy-terminus truncated (tr-, 26-162 aa) human (hKITL) and murine (mKITL) KITL in cultures of cord blood (CB) mononuclear cells (MNCs) and CD34(pos) cells that mimic either steady state (growth factors alone) or stress (growth factors plus dexamethasone [DXM]) erythropoeisis were investigated. In steady state cultures, the KITLs investigated were equally potent in sustaining growth of hematopoietic colonies and expansion of megakaryocytes (MK) and erythroid precursors (EBs). By contrast, under stress erythropoiesis conditions, fl-hKITL generated greater numbers of EBs (fold increase [FI]=140) than tr-hKITL or mKITL (FI=20-40). Flow cytometric analyses indicated that only EBs generated with fl-hKITL remained immature (>70% CD36(pos)/CD235a(neg/low)), and therefore capable to proliferate, until day 8-12 in response to DXM. Signaling studies indicated that all KITLs investigated induced EBs to phosphorylate signal transducer and activator of transcription 5 (STAT5) but that extracellular-signaling-regulated-kinases (ERK) activation was observed mainly in the presence of fl-hKITL. EBs exposed to fl-hKITL also expressed higher levels of GRα than those exposed to mKITL (and tr-hKITL) which were reduced upon exposure to the ERK inhibitor U0126. These data reveal a unique requirement for fl-hKITL in the upregulation of GRα and optimal EB expansion in cultures that mimic stress erythropoiesis.

Collaboration


Dive into the Lilian Varricchio's collaboration.

Top Co-Authors

Avatar

Anna Rita Migliaccio

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Francesca Masiello

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Carolyn Whitsett

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Fabrizio Martelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Gabriella Girelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Agostino Tafuri

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentina Tirelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ann Zeuner

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Fiorella Ciaffoni

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge