Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liliana Costa is active.

Publication


Featured researches published by Liliana Costa.


ACS Nano | 2010

Functional cationic nanomagnet-porphyrin hybrids for the photoinactivation of microorganisms.

Carla M. B. Carvalho; Eliana Alves; Liliana Costa; João P. C. Tomé; Maria A. F. Faustino; Maria G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Adelaide Almeida; Ângela Cunha; Zhi Lin; J. Rocha

Cationic nanomagnet-porphyrin hybrids were synthesized and their photodynamic therapy capabilities were investigated against the Gram (-) Escherichia coli bacteria, the Gram (+) Enterococcus faecalis bacteria and T4-like phage. The synthesis, structural characterization, photophysical properties, and antimicrobial activity of these new materials are discussed. The results show that these new multicharged nanomagnet-porphyrin hybrids are very stable in water and highly effective in the photoinactivation of bacteria and phages. Their remarkable antimicrobial activity, associated with their easy recovery, just by applying a magnetic field, makes these materials novel photosensitizers for water or wastewater disinfection.


Marine Drugs | 2009

Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants

Adelaide Almeida; Ângela Cunha; Newton C. M. Gomes; Eliana Alves; Liliana Costa; Maria A. F. Faustino

Owing to the increasing importance of aquaculture to compensate for the progressive worldwide reduction of natural fish and to the fact that several fish farming plants often suffer from heavy financial losses due to the development of infections caused by microbial pathogens, including multidrug resistant bacteria, more environmentally-friendly strategies to control fish infections are urgently needed to make the aquaculture industry more sustainable. The aim of this review is to briefly present the typical fish farming diseases and their threats and discuss the present state of chemotherapy to inactivate microorganisms in fish farming plants as well as to examine the new environmentally friendly approaches to control fish infection namely phage therapy and photodynamic antimicrobial therapy.


Viruses | 2012

Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

Liliana Costa; Maria A. F. Faustino; M. G. P. M. S. Neves; Ângela Cunha; Adelaide Almeida

Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.


Photochemical and Photobiological Sciences | 2014

Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics

Joana Almeida; João P. C. Tomé; Maria G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Ângela Cunha; Liliana Costa; Maria A. F. Faustino; Adelaide Almeida

One environmental concern related to hospital effluents is discharge of them without preliminary treatment. Antimicrobial photodynamic inactivation (PDI) may represent an alternative to the traditional expensive, unsafe and not always effective disinfection methods. The main goal of this work was to assess the efficiency of PDI on clinical multidrug-resistant (MDR) bacteria in hospital wastewaters in order to evaluate its potential use in treating hospital effluents. The efficiency of PDI was assessed using a cationic porphyrin as the photosensitizer (PS), four MDR bacteria either in phosphate buffered saline or in filtrated hospital wastewaters. The synergistic effect of PDI and antibiotics (ampicillin and chloramphenicol) was also evaluated, as well as the effect of the surfactant sodium dodecyl sulfate (SDS). The results show the efficient inactivation of MDR bacteria in PBS (reduction of 6-8 log after 270 min of irradiation at 40 W m(-2) with 5.0 μM of PS). In wastewater, the inactivation of the four MDR bacteria was again efficient and the decrease in bacterial survival starts even sooner. A faster decrease in bacterial survival occurred when PDI was combined with the addition of antibiotics, at sub-inhibitory and inhibitory concentrations, but the SDS did not affect the PDI efficiency. It can be concluded that PDI has potential to be an effective alternative for the inactivation of MDR bacteria in hospital wastewaters and that the presence of antibiotics may enhance its effectiveness.


Photochemical and Photobiological Sciences | 2010

Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters

Liliana Costa; Carla M. B. Carvalho; Maria A. F. Faustino; Maria G. P. M. S. Neves; João P. C. Tomé; Augusto C. Tomé; José A. S. Cavaleiro; Ângela Cunha; Adelaide Almeida

Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Although the photoinactivation of microorganisms has already been studied under different conditions, a systematic evaluation of irradiation characteristics is still limited. The goal of this study was to test how the light dose, fluence rate and irradiation source affect the viral photoinactivation of a T4-like sewage bacteriophage. The experiments were carried out using white PAR light delivered by fluorescent PAR lamps (40 W m(-2)), sun light (600 W m(-2)) and an halogen lamp (40-1690 W m(-2)). Phage suspensions and two cationic photosensitizers (Tetra-Py(+)-Me, Tri-Py(+)-Me-PF) at concentrations of 0.5, 1.0 and 5.0 microM were used. The results showed that the efficacy of the bacteriophage photoinactivation is correlated not only with the sensitizer and its concentration but also with the light source, energy dose and fluence rate applied. Both photosensitizers at 5.0 microM were able to inactivate the T4-like phage to the limit of detection for each light source and fluence rate. However, depending of the light parameters, different irradiation times are required. The efficiency of photoinactivation is dependent on the spectral emission distribution of the light sources used. Considering the same light source and a fixed light dose applied at different fluence rates, phage inactivation was significantly higher when low fluence rates were used. In this way, the light source, fluence rate and total light dose play an important role in the effectiveness of the antimicrobial photodynamic therapy and should always be considered when establishing an optimal antimicrobial protocol.


Journal of Porphyrins and Phthalocyanines | 2009

Antimicrobial photodynamic activity of porphyrin derivatives: potential application on medical and water disinfection

Carla M. B. Carvalho; João P. C. Tomé; Maria A. F. Faustino; Maria G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Liliana Costa; Eliana Alves; Anabela Oliveira; Ângela Cunha; Adelaide Almeida

In this highlight an overview of the advances performed by the Aveiro group on the design and synthesis of tetrapyrrolic photosensitizers with potential photodynamic antimicrobial activity is presented.


Antiviral Research | 2011

Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT

Liliana Costa; João P. C. Tomé; Maria G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Maria A. F. Faustino; Ângela Cunha; Newton C. M. Gomes; Adelaide Almeida

Nowadays, the emergence of drug resistant microorganisms is a public health concern. The antimicrobial photodynamic therapy (aPDT) has an efficient action against a wide range of microorganisms and can be viewed as an alternative approach for treating microbial infections. The aim of this study was to determine if a model target virus (T4-like bacteriophage), in the presence of the tricationic porphyrin 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide (Tri-Py(+)-Me-PF), can develop resistance to aPDT and recover its viability after photodynamic treatments. To assess the development of aPDT resistance after repeated treatments, a suspension of T4-like bacteriophage was irradiated with white light (40 Wm(-2)) for 120 min in the presence of 5.0 μM of Tri-Py(+)-Me-PF (99.99% of inactivation) and new phage suspensions were produced from the surviving phages, after each cycle of light exposure. The procedure was repeated ten times. To evaluate the recovery of viral viability after photoinactivation, a suspension of T4-like bacteriophage was irradiated with white light for 120 min in the presence of 5.0 μM of Tri-Py(+)-Me-PF on five consecutive days. In each day, an aliquot of the irradiated suspension was plated and the number of lysis plaques was counted after 24, 48, 72, 96 and 120 h of dark incubation at 37 °C. The profile of bacteriophage photoinactivation did not change after ten consecutive cycles and no recovery of viability was detected after five accumulated cycles of photodynamic treatment. The results suggest that aPDT represents a valuable and promising alternative therapy to treat viral infections, overcoming the problem of microbial resistance.


PLOS ONE | 2014

Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production.

Yolanda J. Silva; Liliana Costa; Carla Pereira; Cristiana Mateus; Ângela Cunha; Ricardo Calado; Newton C. M. Gomes; Miguel Angel Pardo; Igor Hernandez; Adelaide Almeida

Fish larvae in aquaculture have high mortality rates due to pathogenic bacteria, especially the Vibrio species, and ineffective prophylactic strategies. Vaccination is not feasible in larvae and antibiotics have reduced efficacy against multidrug resistant bacteria. A novel approach to controlling Vibrio infections in aquaculture is needed. The potential of phage therapy to combat vibriosis in fish larvae production has not yet been examined. We describe the isolation and characterization of two bacteriophages capable of infecting pathogenic Vibrio and their application to prevent bacterial infection in fish larvae. Two groups of zebrafish larvae were infected with V. anguillarum (∼106 CFU mL−1) and one was later treated with a phage lysate (∼108 PFU mL−1). A third group was only added with phages. A fourth group received neither bacteria nor phages (fish control). Larvae mortality, after 72 h, in the infected and treated group was similar to normal levels and significantly lower than that of the infected but not treated group, indicating that phage treatment was effective. Thus, directly supplying phages to the culture water could be an effective and inexpensive approach toward reducing the negative impact of vibriosis in larviculture.


Journal of Lightwave Technology | 2012

Demonstration of a Remotely Dual-Pumped Long-Reach PON for Flexible Deployment

Bernhard Schrenk; Jose A. Lazaro; D. Klonidis; F. Bonada; F. Saliou; Victor Polo; Eduardo López; Quang Trung Le; Philippe Chanclou; Liliana Costa; A. Teixeira; Sotiria Chatzi; Ioannis Tomkos; Giorgio Maria Tosi Beleffi; D. Leino; Risto Soila; Spiros Spirou; G. de Valicourt; Romain Brenot; Christophe Kazmierski; Josep Prat

We propose and experimentally demonstrate a flexible wavelength division multiplexing/time division multiplexing network architecture for converged metro-access environment. Entire passiveness in the fiber plant is achieved with remote amplification in the signal distribution nodes along the metro ring and in the power splitters of the local access tree. We assist a traditional remote pumping scheme with a distributed pump provided by the optical network units and demonstrate that loss budgets beyond 30 dB can be supported. Data transmission of up to 10 Gb/s is evaluated in different deployment scenarios, reaching from a 78 km long reach rural to a dense 1:128 split/λ urban configuration with field installed fibers, including also worst case resilience configurations.


Archive | 2010

Free Space Optical Technologies

D. Forin; G. Incerti; G. M. Tosi Beleffi; Alan Teixeira; Liliana Costa; P.S. De Brito Andre; B. Geiger; Erich Leitgeb; F. Nadeem

Free Space Optics (FSO), also known as Optical Wireless or Lasercom (i.e. Laser Communications), is a re-emerging technology using modulated optical beams to establish short, medium or long reach wireless data transmission. Most of the attention on FSO communication systems it was initially boost by military purposes and first development of this technology was dedicated to the solution of issues related to defense applications. Today’s market interest to FSO refers to both civil and military scenarios covering different situations and different environments, from undersea to space. In particular, due to the high carrier frequency of 300 THz and the consequently high bandwidth, the most prominent advantage of Free Space Optical (FSO) communication links may be their potential for very high data rates of several Gbps (up to 40 Gbps in the future (J. Wells, 2009)). Other advantages like license-free operation, easy installation, commercial availability, and insensitivity to electromagnetic interference, jamming, or wiretapping make FSO interesting for applications like last mile access, airborne and satellite communication (L. Stotts et alt, 2009), temporary mobile links and permanent connections between buildings. Mainly, the adoption of FSO is needed when a physical connection is not a practicable solution and where is requested to handle an high bandwidth. As a matter of fact, FSO is the only technology, in the wireless scenario, able to grant bandwidth of several Gigabits per second. The interest in this technology is also due to the low initial CAPEX (Capital Expenditure) requirement, to the intrinsic high-level data protection & security, to the good flexibility and great scalability innate in this solution. For these reasons FSO possible applications cover today, as mentioned, a wide range. Thus this technology generates interest in several markets: the first/last mile in dense urban areas, network access for isolated premises, highspeed LAN-to-LAN (Local Area Networks) and even chip-to-chip connections, transitional and temporary network connection, undersea and space communication. Furthermore FSO can be used as an alternative or upgrade add-on to existing wireless technologies when the climatic conditions permit its full usage. 13

Collaboration


Dive into the Liliana Costa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

João P. C. Tomé

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Jose A. Lazaro

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge