Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liliana Stan is active.

Publication


Featured researches published by Liliana Stan.


Optics Letters | 2015

Broadband perfect absorber based on one ultrathin layer of refractory metal

Huixu Deng; Zhigang Li; Liliana Stan; Daniel Rosenmann; David A. Czaplewski; Jie Gao; Xiaodong Yang

Broadband perfect absorber based on one ultrathin layer of the refractory metal chromium without structure patterning is proposed and demonstrated. The ideal permittivity of the metal layer for achieving broadband perfect absorption is derived based on the impedance transformation method. Since the permittivity of the refractory metal chromium matches this ideal permittivity well in the visible and near-infrared range, a silica-chromium-silica three-layer absorber is fabricated to demonstrate the broadband perfect absorption. The experimental results under normal incidence show that the absorption is above 90% over the wavelength range of 0.4-1.4 μm, and the measurements under angled incidence within 400-800 nm prove that the absorber is angle-insensitive and polarization-independent.


Optics Express | 2015

Aluminum plasmonic metamaterials for structural color printing

Fei Cheng; Jie Gao; Liliana Stan; Daniel Rosenmann; David A. Czaplewski; Xiaodong Yang

We report a structural color printing platform based on aluminum plasmonic metamaterials supporting near perfect light absorption and narrow-band spectral response tunable across the visible spectrum to realize high-resolution, angle-insensitive color printing with high color purity and saturation. Additionally, the fabricated metamaterials can be protected by a transparent polymer thin layer for ambient use with further improved color performance. The demonstrated structural color printing with aluminum plasmonic metamaterials offers great potential for relevant applications such as security marking and information storage.


Optics Express | 2015

Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer

Fei Cheng; Xiaodong Yang; Daniel Rosenmann; Liliana Stan; David A. Czaplewski; Jie Gao

A high-resolution and angle-insensitive structural color generation platform is demonstrated based on triple-layer aluminum-silica-aluminum metamaterials supporting surface plasmon resonances tunable across the entire visible spectrum. The color performances of the fabricated aluminum metamaterials can be strongly enhanced by coating a thin transparent polymer layer on top. The results show that the presence of the polymer layer induces a better impedance matching for the plasmonic resonances to the free space so that strong light absorption can be obtained, leading to the generation of pure colors in cyan, magenta, yellow and black (CMYK) with high color saturation.


Superconductor Science and Technology | 2015

Fabrication of large dual-polarized multichroic TES bolometer arrays for CMB measurements with the SPT-3G camera

C. M. Posada; Peter A. R. Ade; Z. Ahmed; K. Arnold; J. E. Austermann; A. N. Bender; L. E. Bleem; B. A. Benson; K. L. Byrum; J. E. Carlstrom; C. L. Chang; H. M. Cho; S. T. Ciocys; Jean-François Cliche; T. M. Crawford; A. Cukierman; David A. Czaplewski; Junjia Ding; Ralu Divan; T. de Haan; M. Dobbs; D. Dutcher; W. Everett; A. Gilbert; N. W. Halverson; N. L. Harrington; K. Hattori; J. W. Henning; G. C. Hilton; W. L. Holzapfel

This work presents the procedures used at Argonne National Laboratory to fabricate large arrays of multichroic transition-edge sensor (TES) bolometers for cosmic microwave background (CMB) measurements. These detectors will be assembled into the focal plane for the SPT-3G camera, the third generation CMB camera to be installed in the South Pole Telescope. The complete SPT-3G camera will have approximately 2690 pixels, for a total of 16 140 TES bolometric detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a Nb microstrip line. In-line filters are used to define the different bands before the millimeter-wavelength signal is fed to the respective Ti/Au TES bolometers. There are six TES bolometer detectors per pixel, which allow for measurements of three band-passes (95, 150 and 220 GHz) and two polarizations. The steps involved in the monolithic fabrication of these detector arrays are presented here in detail. Patterns are defined using a combination of stepper and contact lithography. The misalignment between layers is kept below 200 nm. The overall fabrication involves a total of 16 processes, including reactive and magnetron sputtering, reactive ion etching, inductively coupled plasma etching and chemical etching.


Journal of Applied Physics | 2014

Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel x-ray source

Chrystian M. Posada; Edwin J. Grant; Ralu Divan; Anirudha V. Sumant; Daniel Rosenmann; Liliana Stan; Hyoung Koo Lee; Carlos H. Castano

A field emission based flat-panel transmission x-ray source is being developed as an alternative for medical and industrial imaging. A field emitter array (FEA) prototype based on nitrogen incorporated ultrananocrystalline diamond film has been fabricated to be used as the electron source of this flat panel x-ray source. The FEA prototype was developed using conventional microfabrication techniques. The field emission characteristics of the FEA prototype were evaluated. Results indicated that emission current densities of the order of 6 mA/cm2 could be obtained at electric fields as low as 10 V/μm to 20 V/μm. During the prototype microfabrication process, issues such as delamination of the extraction gate and poor etching of the SiO2 insulating layer located between the emitters and the extraction layer were encountered. Consequently, alternative FEA designs were investigated. Experimental and simulation data from the first FEA prototype were compared and the results were used to evaluate the performance ...


Nano Letters | 2016

Single-Crystalline SrRuO3 Nanomembranes: A Platform for Flexible Oxide Electronics

Deborah M. Paskiewicz; Rebecca Sichel-Tissot; Evguenia Karapetrova; Liliana Stan; Dillon D. Fong

The field of oxide electronics has benefited from the wide spectrum of functionalities available to the ABO3 perovskites, and researchers are now employing defect engineering in single crystalline heterostructures to tailor properties. However, bulk oxide single crystals are not conducive to many types of applications, particularly those requiring mechanical flexibility. Here, we demonstrate the realization of an all-oxide, single-crystalline nanomembrane heterostructure. With a surface-to-volume ratio of 2 × 10(7), the nanomembranes are fully flexible and can be readily transferred to other materials for handling purposes or for new materials integration schemes. Using in situ synchrotron X-ray scattering, we find that the nanomembranes can bond to other host substrates near room temperature and demonstrate coupling between surface reactivity and electromechanical properties in ferroelectric nanomembrane systems. The synthesis technique described here represents a significant advancement in materials integration and provides a new platform for the development of flexible oxide electronics.


Proceedings of SPIE | 2016

Integrated performance of a frequency domain multiplexing readout in the SPT-3G receiver

A. N. Bender; Peter A. R. Ade; A. J. Anderson; J. S. Avva; Z. Ahmed; K. Arnold; J. E. Austermann; R. Basu Thakur; B. A. Benson; L. E. Bleem; K. L. Byrum; J. E. Carlstrom; F. W. Carter; C. L. Chang; H. M. Cho; Jean-François Cliche; T. M. Crawford; A. Cukierman; David A. Czaplewski; Junjia Ding; Ralu Divan; T. de Haan; M. Dobbs; D. Dutcher; Wendeline Everett; A. Gilbert; John Groh; R. Guyser; N. W. Halverson; A. H. Harke-Hosemann

The third generation receiver for the South Pole Telescope, SPT-3G, will make extremely deep, arcminuteresolution maps of the temperature and polarization of the cosmic microwave background. The SPT-3G maps will enable studies of the B-mode polarization signature, constraining primordial gravitational waves as well as the effect of massive neutrinos on structure formation in the late universe. The SPT-3G receiver will achieve exceptional sensitivity through a focal plane of ~16,000 transition-edge sensor bolometers, an order of magnitude more than the current SPTpol receiver. SPT-3G uses a frequency domain multiplexing (fMux) scheme to read out the focal plane, combining the signals from 64 bolometers onto a single pair of wires. The fMux readout facilitates the large number of detectors in the SPT-3G focal plane by limiting the thermal load due to readout wiring on the 250 millikelvin cryogenic stage. A second advantage of the fMux system is that the operation of each bolometer can be optimized. In addition to these benefits, the fMux readout introduces new challenges into the design and operation of the receiver. The bolometers are operated at a range of frequencies up to 5 MHz, requiring control of stray reactances over a large bandwidth. Additionally, crosstalk between multiplexed detectors will inject large false signals into the data if not adequately mitigated. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016. Here, we present the pre-deployment performance of the fMux readout system with the SPT-3G focal plane.


Proceedings of SPIE | 2016

Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

C. M. Posada; Peter A. R. Ade; A. J. Anderson; J. S. Avva; Z. Ahmed; K. Arnold; J. E. Austermann; A. N. Bender; B. A. Benson; L. E. Bleem; K. L. Byrum; J. E. Carlstrom; F. W. Carter; C. L. Chang; Hsiao-Mei Cho; A. Cukierman; David A. Czaplewski; Junjia Ding; Ralu Divan; Tijmen de Haan; M. Dobbs; D. Dutcher; W. Everett; R. N. Gannon; R. Guyser; N. W. Halverson; N. L. Harrington; K. Hattori; J. W. Henning; G. C. Hilton

Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES’s Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from these research and development wafers have been incorporated into the fabrication process to get the baseline fabrication process presented here. SPT-3G is scheduled to deploy to the South Pole Telescope in late 2016.


IEEE Transactions on Magnetics | 2014

Tunable Transmission Line With Nanopatterned Thin Films for Smart RF Applications

B. M. Farid Rahman; Ralu Divan; Liliana Stan; Daniel Rosenmann; Leonidas E. Ocola; Guoan Wang

A concept of tunable transmission line (TL) enabled with nanopatterned ferromagnetic permalloy (Py) and ferroelectric lead zirconium titanate (PZT) thin films is presented. The permittivity (εr) of PZT is electrical tunable with dc voltage, and the permeability (μr) of Py is electrical tunable with dc current, thus simultaneous electric tunable capacitance and inductance capability are provided for the proposed TL. The proposed TL has been fabricated and compared with a regular line without nanofilm patterns. Py is patterned with the dimensions of 10 μm × 150 nm and thickness of 100 nm for high built-in anisotropy field. The ferromagnetic resonant frequency is measured to be 6.3 GHz. Compared with the regular TL, the implemented TL has only generated 0.05 dB additional insertion loss at 4 GHz. The electrical tunability of both the capacitance and the inductance has been demonstrated for the first time. By applying the varied dc current (0-150 mA) and the dc voltage (0-20 V), measured results have shown that the proposed line can provide 90° phase shift from 3.75 to 4 GHz with the fixed characteristic impedance. The continuous tuning of the characteristics impedance from 59 to 61 Ω under suitable bias conditions shows its promise as an impedance matching network. Tunable range of both the phase shifter and the impedance matching network can be further increased with thicker and multilayer films.


Optics Express | 2018

Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators

Zhigang Li; Liliana Stan; David A. Czaplewski; Xiaodong Yang; Jie Gao

Wavelength-selective metamaterial absorbers in the mid-infrared range are demonstrated by using multiple tungsten cross resonators. By adjusting the geometrical parameters of cross resonators in single-sized unit cells, near-perfect absorption with single absorption peak tunable from 3.5 µm to 5.5 µm is realized. The combination of two, three, or four cross resonators of different sizes in one unit cell enables broadband near-perfect absorption at mid-infrared range. The obtained absorption spectra exhibit omnidirectionality and weak dependence on incident polarization. The underlying mechanism of near-perfect absorption with cross resonators is further explained by the optical mode analysis, dispersion relation and equivalent RLC circuit model. Moreover, thermal analysis is performed to study the heat generation and temperature increase in the cross resonator absorbers, while the energy conversion efficiency is calculated for the thermophotovoltaic system made of the cross resonator thermal emitters and low-bandgap semiconductors.

Collaboration


Dive into the Liliana Stan's collaboration.

Top Co-Authors

Avatar

Ralu Divan

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Rosenmann

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. E. Austermann

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junjia Ding

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge