Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liliane Meunier is active.

Publication


Featured researches published by Liliane Meunier.


Journal of Ovarian Research | 2009

BMP-2 signaling in ovarian cancer and its association with poor prognosis

Cécile Le Page; Marie-Line Puiffe; Liliane Meunier; Magdalena Zietarska; Manon de Ladurantaye; Patricia N. Tonin; Diane Provencher; Anne-Marie Mes-Masson

BackgroundWe previously observed the over-expression of BMP-2 in primary cultures of epithelial ovarian cancer (EOC) cells as compared to normal epithelial cells based on Affymetrix microarray profiling [1]. Here we investigate the effect of BMP-2 on several parameters of ovarian cancer tumorigenesis using the TOV-2223, TOV-1946 and TOV-112D EOC cell lines.MethodsWe treated each EOC cell line with recombinant BMP-2 and assayed various parameters associated with tumorigenesis. More specifically, cell signaling events induced by BMP-2 treatment were investigated by western-blot using anti-phosphospecific antibodies. Induction of Id1, Snail and Smad6 mRNA expression was investigated by real time RT-PCR. The ability of cells to migrate was tested using the scratch assay. Cell-cell adhesion was analyzed by the ability of cells to form spheroids. We also investigated BMP-2 expression in tissue samples from a series of EOC patients.ResultsTreatment of these cell lines with recombinant BMP-2 induced a rapid phosphorylation of Smad1/5/8 and Erk MAPKs. Increased expression of Id1, Smad6 and Snail mRNAs was also observed. Only in the TOV-2223 cell line were these signaling events accompanied by an alteration in cell proliferation. We also observed that BMP-2 efficiently increased the motility of all three cell lines. In contrast, BMP-2 treatment decreased the ability of TOV-1946 and TOV-112D cell lines to form spheroids indicating an inhibition of cell-cell adhesion. The expression of BMP-2 in tumor tissues from patients was inversely correlated with survival.ConclusionThese results suggest that EOC cell secretion of BMP-2 in the tumor environment contributes to a modification of tumor cell behavior through a change in motility and adherence. We also show that BMP-2 expression in tumor tissues is associated with a poorer prognosis for ovarian cancer patients.


Breast Cancer Research | 2015

Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases

Sébastien Tabariès; Véronique Ouellet; Brian E. Hsu; Matthew G. Annis; April A.N. Rose; Liliane Meunier; Euridice Carmona; Christine E. Tam; Anne-Marie Mes-Masson; Peter M. Siegel

IntroductionBreast cancer cells display preferences for specific metastatic sites including the bone, lung and liver. Metastasis is a complex process that relies, in part, on interactions between disseminated cancer cells and resident/infiltrating stromal cells that constitute the metastatic microenvironment. Distinct immune infiltrates can either impair the metastatic process or conversely, assist in the seeding, colonization and growth of disseminated cancer cells.MethodsUsing in vivo selection approaches, we previously isolated 4T1-derived breast cancer cells that preferentially metastasize to these organs and tissues. In this study, we examined whether the propensity of breast cancer cells to metastasize to the lung, liver or bone is associated with and dependent on distinct patterns of immune cell infiltration. Immunohistocytochemistry and immunohistofluorescence approaches were used to quantify innate immune cell infiltrates within distinct metastases and depletion of Gr1+ (Ly-6C and Ly-6G) or specifically Ly-6G+ cells was performed to functionally interrogate the role of Ly-6G+ infiltrates in promoting metastasis to these organs.ResultsWe show that T lymphocytes (CD3+), myeloid-derived (Gr-1+) cells and neutrophils (Ly-6G+ or NE+) exhibit the most pronounced recruitment in lung and liver metastases, with markedly less recruitment within bone metastatic lesions. Interestingly, these infiltrating cell populations display different patterns of localization within soft tissue metastases. T lymphocytes and granulocytic immune infiltrates are localized around the periphery of liver metastases whereas they were dispersed throughout the lung metastases. Furthermore, Gr-1+ cell-depletion studies demonstrate that infiltrating myeloid-derived cells are essential for the formation of breast cancer liver metastases but dispensable for metastasis to the lung and bone. A specific role for the granulocytic component of the innate immune infiltrate was revealed through Ly-6G+ cell-depletion experiments, which resulted in significantly impaired formation of liver metastases. Finally, we demonstrate that the CD11b+/Ly-6G+ neutrophils that infiltrate and surround the liver metastases are polarized toward an N2 phenotype, which have previously been shown to enhance tumor growth and metastasis.ConclusionsOur results demonstrate that the liver-metastatic potential of breast cancer cells is heavily reliant on interactions with infiltrating Ly-6G+ cells within the liver microenvironment.


International Journal of Gynecological Pathology | 2016

An Immunohistochemical Algorithm for Ovarian Carcinoma Typing.

Martin Köbel; Kurosh Rahimi; Peter F. Rambau; Christopher Naugler; Cécile Le Page; Liliane Meunier; Manon de Ladurantaye; Sandra Lee; Samuel Leung; Ellen L. Goode; Susan J. Ramus; Joseph W. Carlson; Xiaodong Li; Carol A. Ewanowich; Linda E. Kelemen; Barbara C. Vanderhyden; Diane Provencher; David Huntsman; Cheng-Han Lee; C. Blake Gilks; Anne‐Marie Mes Masson

There are 5 major histotypes of ovarian carcinomas. Diagnostic typing criteria have evolved over time, and past cohorts may be misclassified by current standards. Our objective was to reclassify the recently assembled Canadian Ovarian Experimental Unified Resource and the Alberta Ovarian Tumor Type cohorts using immunohistochemical (IHC) biomarkers and to develop an IHC algorithm for ovarian carcinoma histotyping. A total of 1626 ovarian carcinoma samples from the Canadian Ovarian Experimental Unified Resource and the Alberta Ovarian Tumor Type were subjected to a reclassification by comparing the original with the predicted histotype. Histotype prediction was derived from a nominal logistic regression modeling using a previously reclassified cohort (N=784) with the binary input of 8 IHC markers. Cases with discordant original or predicted histotypes were subjected to arbitration. After reclassification, 1762 cases from all cohorts were subjected to prediction models (&khgr;2 Automatic Interaction Detection, recursive partitioning, and nominal logistic regression) with a variable IHC marker input. The histologic type was confirmed in 1521/1626 (93.5%) cases of the Canadian Ovarian Experimental Unified Resource and the Alberta Ovarian Tumor Type cohorts. The highest misclassification occurred in the endometrioid type, where most of the changes involved reclassification from endometrioid to high-grade serous carcinoma, which was additionally supported by mutational data and outcome. Using the reclassified histotype as the endpoint, a 4-marker prediction model correctly classified 88%, a 6-marker 91%, and an 8-marker 93% of the 1762 cases. This study provides statistically validated, inexpensive IHC algorithms, which have versatile applications in research, clinical practice, and clinical trials.


Biomicrofluidics | 2013

Empirical chemosensitivity testing in a spheroid model of ovarian cancer using a microfluidics-based multiplex platform.

Tamal Das; Liliane Meunier; Laurent Barbe; Diane Provencher; O. Guenat; Thomas Gervais; Anne-Marie Mes-Masson

The use of biomarkers to infer drug response in patients is being actively pursued, yet significant challenges with this approach, including the complicated interconnection of pathways, have limited its application. Direct empirical testing of tumor sensitivity would arguably provide a more reliable predictive value, although it has garnered little attention largely due to the technical difficulties associated with this approach. We hypothesize that the application of recently developed microtechnologies, coupled to more complex 3-dimensional cell cultures, could provide a model to address some of these issues. As a proof of concept, we developed a microfluidic device where spheroids of the serous epithelial ovarian cancer cell line TOV112D are entrapped and assayed for their chemoresponse to carboplatin and paclitaxel, two therapeutic agents routinely used for the treatment of ovarian cancer. In order to index the chemoresponse, we analyzed the spatiotemporal evolution of the mortality fraction, as judged by vital dyes and confocal microscopy, within spheroids subjected to different drug concentrations and treatment durations inside the microfluidic device. To reflect microenvironment effects, we tested the effect of exogenous extracellular matrix and serum supplementation during spheroid formation on their chemotherapeutic response. Spheroids displayed augmented chemoresistance in comparison to monolayer culturing. This resistance was further increased by the simultaneous presence of both extracellular matrix and high serum concentration during spheroid formation. Following exposure to chemotherapeutics, cell death profiles were not uniform throughout the spheroid. The highest cell death fraction was found at the center of the spheroid and the lowest at the periphery. Collectively, the results demonstrate the validity of the approach, and provide the basis for further investigation of chemotherapeutic responses in ovarian cancer using microfluidics technology. In the future, such microdevices could provide the framework to assay drug sensitivity in a timeframe suitable for clinical decision making.


BMC Cancer | 2013

Low expression of the X-linked ribosomal protein S4 in human serous epithelial ovarian cancer is associated with a poor prognosis

Serges P. Tsofack; Liliane Meunier; Lilia Sanchez; Jason Madore; Diane Provencher; Anne-Marie Mes-Masson; Michel Lebel

BackgroundThe X-linked ribosomal protein S4 (RPS4X), which is involved in cellular translation and proliferation, has previously been identified as a partner of the overexpressed multifunctional protein YB-1 in several breast cancer cells. Depletion of RPS4X results in consistent resistance to cisplatin in such cell lines.MethodsAs platinum-based chemotherapy is a standard first line therapy used to treat patients with ovarian cancer, we evaluated the prognostic value of RPS4X and YB-1 at the protein level in specimen from 192 high-grade serous epithelial ovarian cancer patients.ResultsImmunohistochemistry studies indicated that high expression of RPS4X was associated with a lower risk of death and later disease progression (HR = 0.713, P = 0.001 and HR = 0.761, P = 0.001, respectively) as compared to low expression of RPS4X. In contrast, YB-1 was not significantly associated with either recurrence or survival time in this cohort. Finally, the depletion of RPS4X with different siRNAs in two different ovarian cancer cell lines reduced their proliferative growth rate but more importantly increased their resistance to cisplatin.ConclusionAltogether, these results suggest that the levels of RPS4X could be a good indicator for resistance to platinum-based therapy and a prognostic marker for ovarian cancer. Our study also showed that RPS4X is an independent prognostic factor in patients with serous epithelial ovarian cancer.


BMC Cancer | 2012

Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer

Isabelle Létourneau; Michael C.J. Quinn; Lu-Lin Wang; Lise Portelance; Katia Caceres; Louis Cyr; Nathalie Delvoye; Liliane Meunier; Manon de Ladurantaye; Zhen Shen; Suzanna L. Arcand; Patricia N. Tonin; Diane Provencher; Anne-Marie Mes-Masson

BackgroundCell line models have proven to be effective tools to investigate a variety of ovarian cancer features. Due to the limited number of cell lines, particularly of the serous subtype, the heterogeneity of the disease, and the lack of cell lines that model disease progression, there is a need to further develop cell line resources available for research. This study describes nine cell lines derived from three ovarian cancer cases that were established at initial diagnosis and at subsequent relapse after chemotherapy.MethodsThe cell lines from three women diagnosed with high-grade serous ovarian cancer (1369, 2295 and 3133) were derived from solid tumor (TOV) and ascites (OV), at specific time points at diagnosis and relapse (R). Primary treatment was a combination of paclitaxel/carboplatin (1369, 3133), or cisplatin/topotecan (2295). Second line treatment included doxorubicin, gemcitabine and topotecan. In addition to molecular characterization (p53, HER2), the cell lines were characterized based on cell growth characteristics including spheroid growth, migration potential, and anchorage independence. The in vivo tumorigenicity potential of the cell lines was measured. Response to paclitaxel and carboplatin was assessed using a clonogenic assay.ResultsAll cell lines had either a nonsense or missense TP53 mutations. The ability to form compact spheroids or aggregates was observed in six of nine cell lines. Limited ability for migration and anchorage independence was observed. The OV3133(R) cell line, formed tumors at subcutaneous sites in SCID mice. Based on IC50 values and dose response curves, there was clear evidence of acquired resistance to carboplatin for TOV2295(R) and OV2295(R2) cell lines.ConclusionThe study identified nine new high-grade serous ovarian cancer cell lines, derived before and after chemotherapy that provides a unique resource for investigating the evolution of this common histopathological subtype of ovarian cancer.


PLOS ONE | 2011

Subtype Specific Elevated Expression of Hyaluronidase-1 (HYAL-1) in Epithelial Ovarian Cancer

Paule Héléna Yoffou; Lydia Edjekouane; Liliane Meunier; André Tremblay; Diane Provencher; Anne-Marie Mes-Masson; Euridice Carmona

Background Epithelial ovarian cancer (EOC) is morphologically heterogeneous being classified as serous, endometrioid, clear cell, or mucinous. Molecular genetic analysis has suggested a role for tumor suppressor genes located at chromosome 3p in serous EOC pathogenesis. Our objective was to evaluate the expression of HYAL1, located at chromosome 3p21.3, in these EOC subtypes, and to investigate its correlation with the expression of steroid hormone receptors. Methodology/Principal Findings We determined the mRNA expression of HYAL1, estrogen receptor (ER)-α, ERβ and progesterone receptor (PR) in EOC tumor samples and cell lines using quantitative RT-PCR. We also examined the expression of these genes in a publicly available microarray dataset. HYAL-1 enzyme activity was measured in EOC cell lines and in plasma samples from patients. We found that HYAL1 mRNA expression was elevated in clear cell and mucinous EOC tissue samples, but not in serous and endometrioid samples, normal ovaries or benign tumors. Similar results were obtained by two different techniques and with tissue sample cohorts from two independent institutions. Concordantly, HYAL1 mRNA levels and enzymatic activity were elevated only in EOC cell lines derived from clear cell and mucinous subtypes. We also showed that HYAL1 mRNA was inversely correlated to that of ERα specifically in clear cell and mucinous EOCs. Additionally, ectopic expression of ERα in a clear cell EOC cell line (ER- and PR-negative) induced 50% reduction of HYAL1 mRNA expression, supporting a role of ERα in HYAL1 gene regulation. Significantly, HYAL-1 activity was also high in the plasma of patients with these EOC subtypes. Conclusions/Significance This is the first report showing high HYAL-1 levels in EOC and demonstrating HYAL1 gene repression by ERα. Our results identify Hyaluronidase-1 as a potential target/biomarker for clear cell and mucinous EOCs and especially in tumors with low ERα levels.


International Journal of Gynecological Cancer | 2015

Dna Damage Signaling and Apoptosis in Preinvasive Tubal Lesions of Ovarian Carcinoma

Gautier Chene; Véronique Ouellet; Kurosh Rahimi; Véronique Barrès; Katia Caceres; Liliane Meunier; Louis Cyr; Manon de Ladurantaye; Diane Provencher; Anne Marie Mes Masson

Objective High-grade serous ovarian cancer (HGSC) is the most life-threatening gynecological malignancy despite surgery and chemotherapy. A better understanding of the molecular basis of the preinvasive stages might be helpful in early detection and diagnosis. Genetic instability is 1 of the characteristics shared by most human cancers, and its level is variable through precancerous lesions to advanced cancer. Because DNA damage response (DDR) has been described as 1 of the first phases in genomic instability, we investigated the level of DDR activation and the apoptosis pathway in serous tubal intraepithelial carcinoma (STIC), the potential precursor of HGSC. Methods/Materials A tissue microarray including 21 benign fallopian tubes, 21 STICs, 17 HGSCs from patients with STICs (associated ovarian cancer [AOC]) from the same individuals, and 30 HGSCs without STICs (non-AOC) was used in this study. Immunohistochemistry was performed to evaluate the level of DDR proteins (pATM, pChk2, &ggr;H2AX, 53BP1, and TRF2), apoptosis proteins (Bcl2, BAX, and BIM), and cyclin E. Results The expression of all DDR proteins increased from benign fallopian tubes to STICs. The level of expression of pATM, pChk2, &ggr;H2AX, and TRF2 was also increased in STICs in comparison with AOC. BAX, BIM, and cyclin E expressions were high in STICs, whereas Bcl2 expression was low. Immunohistochemical profiles of AOC and non-AOC were also different. Conclusions These results suggest an activation of the DDR and apoptosis pathways in STICs, indicating that genomic instability may occur early in the precancerous lesions of HGSC.


The Journal of Pathology: Clinical Research | 2016

STAT1‐associated intratumoural TH1 immunity predicts chemotherapy resistance in high‐grade serous ovarian cancer

Katrina K Au; Cécile Le Page; Runhan Ren; Liliane Meunier; Isabelle Clément; Kathrin Tyrishkin; Nichole Peterson; Jennifer Kendall-Dupont; Timothy Childs; Julie-Ann Francis; Charles H. Graham; Andrew W. B. Craig; Jeremy A. Squire; Anne-Marie Mes-Masson; Madhuri Koti

High‐grade serous ovarian carcinoma (HGSC) accounts for 70% of all epithelial ovarian cancers but clinical management is challenged by a lack of accurate prognostic and predictive biomarkers of chemotherapy response. This study evaluated the role of Signal Transducer and Activator of Transcription 1 (STAT1) as an independent prognostic and predictive biomarker and its correlation with intratumoural CD8+ T cells in a second independent biomarker validation study. Tumour STAT1 expression and intratumoural CD8+ T cell infiltration were assessed by immunohistochemistry as a multicentre validation study conducted on 734 chemotherapy‐naïve HGSCs. NanoString‐based profiling was performed to correlate expression of STAT1 target genes CXCL9, CXCL10 and CXCL11 with CD8A transcript expression in 143 primary tumours. Multiplexed cytokine analysis of pre‐treatment plasma from resistant and sensitive patients was performed to assess systemic levels of STAT1‐induced cytokines. STAT1 was validated as a prognostic and predictive biomarker in both univariate and multivariate models and its expression correlated significantly with intra‐epithelial CD8+ T cell infiltration in HGSC. STAT1 levels increased the prognostic and predictive value of intratumoural CD8+ T cells, confirming their synergistic role as biomarkers in HGSC. In addition, expression of STAT1 target genes (CXCL9, CXCL10 and CXCL11) correlated significantly with levels of, and CD8A transcripts from intratumoural CD8+ T cells within the resistant and sensitive tumours. Our findings provide compelling evidence that high levels of STAT1, STAT1‐induced chemokines and CD8+ T cells correlate with improved chemotherapy response in HGSC. These results identify STAT1 and its target genes as novel biomarkers of chemosensitivity in HGSC. These findings provide new translational opportunities for patient stratification for immunotherapies based on emerging biomarkers of inflammation in HGSC. An improved understanding of the role of interferon‐inducible genes will be foundational for developing immunomodulatory therapies in ovarian cancer.


Cell Cycle | 2015

PRP4K is a HER2-regulated modifier of taxane sensitivity

Dale Corkery; Cécile Le Page; Liliane Meunier; Diane Provencher; Anne-Marie Mes-Masson; Graham Dellaire

The taxanes are used alone or in combination with anthracyclines or platinum drugs to treat breast and ovarian cancer, respectively. Taxanes target microtubules in cancer cells and modifiers of taxane sensitivity have been identified in vitro, including drug efflux and mitotic checkpoint proteins. Human epidermal growth factor receptor 2 (HER2/ERBB2) gene amplification is associated with benefit from taxane therapy in breast cancer yet high HER2 expression also correlates with poor survival in both breast and ovarian cancer. The pre-mRNA splicing factor 4 kinase PRP4K (PRPF4B), which we identified as a component of the U5 snRNP also plays a role in regulating the spindle assembly checkpoint (SAC) in response to microtubule-targeting drugs. In this study, we found a positive correlation between PRP4K expression and HER2 status in breast and ovarian cancer patient tumors, which we determined was a direct result of PRP4K regulation by HER2 signaling. Knock-down of PRP4K expression reduced the sensitivity of breast and ovarian cancer cell lines to taxanes, and low PRP4K levels correlated with in vitro-derived and patient acquired taxane resistance in breast and ovarian cancer. Patients with high-grade serous ovarian cancer and high HER2 levels had poor overall survival; however, better survival in the low HER2 patient subgroup treated with platinum/taxane-based therapy correlated positively with PRP4K expression (HR = 0.37 [95% CI 0.15-0.88]; p = 0.03). Thus, PRP4K functions as a HER2-regulated modifier of taxane sensitivity that may have prognostic value as a marker of better overall survival in taxane-treated ovarian cancer patients.

Collaboration


Dive into the Liliane Meunier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurosh Rahimi

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katia Caceres

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Luke Masson

National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge