Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lilin Lai is active.

Publication


Featured researches published by Lilin Lai.


Nature | 2009

Enhancing SIV-Specific Immunity In Vivo by PD-1 Blockade

Vijayakumar Velu; Kehmia Titanji; Baogong Zhu; Sajid Husain; Annette Pladevega; Lilin Lai; Thomas H. Vanderford; Lakshmi Chennareddi; Guido Silvestri; Gordon J. Freeman; Rafi Ahmed; Rama Rao Amara

Chronic immunodeficiency virus infections are characterized by dysfunctional cellular and humoral antiviral immune responses. As such, immune modulatory therapies that enhance and/or restore the function of virus-specific immunity may protect from disease progression. Here we investigate the safety and immune restoration potential of blockade of the co-inhibitory receptor programmed death 1 (PD-1) during chronic simian immunodeficiency virus (SIV) infection in macaques. We demonstrate that PD-1 blockade using an antibody to PD-1 is well tolerated and results in rapid expansion of virus-specific CD8 T cells with improved functional quality. This enhanced T-cell immunity was seen in the blood and also in the gut, a major reservoir of SIV infection. PD-1 blockade also resulted in proliferation of memory B cells and increases in SIV envelope-specific antibody. These improved immune responses were associated with significant reductions in plasma viral load and also prolonged the survival of SIV-infected macaques. Blockade was effective during the early (week 10) as well as late (∼week 90) phases of chronic infection even under conditions of severe lymphopenia. These results demonstrate enhancement of both cellular and humoral immune responses during a pathogenic immunodeficiency virus infection by blocking a single inhibitory pathway and identify a novel therapeutic approach for control of human immunodeficiency virus infections.


The Journal of Infectious Diseases | 2011

Phase 1 Safety and Immunogenicity Testing of DNA and Recombinant Modified Vaccinia Ankara Vaccines Expressing HIV-1 Virus-like Particles

Paul A. Goepfert; Marnie Elizaga; Alicia Sato; Li Qin; Massimo Cardinali; Christine M. Hay; John Hural; Stephen DeRosa; Olivier D. Defawe; Georgia D. Tomaras; David C. Montefiori; Yongxian Xu; Lilin Lai; Spyros A. Kalams; Lindsey R. Baden; Sharon E. Frey; William A. Blattner; Linda S. Wyatt; Bernard Moss; Harriet L. Robinson

BACKGROUND Recombinant DNA and modified vaccinia virus Ankara (rMVA) vaccines represent a promising approach to an HIV/AIDS vaccine. This Phase 1 clinical trial compared the safety and immunogenicity of a rMVA vaccine administered with and without DNA vaccine priming METHODS GeoVax pGA2/JS7 DNA (D) and MVA/HIV62 (M) vaccines encode noninfectious virus-like particles. Intramuscular needle injections were used to deliver placebo, 2 doses of DNA followed by 2 doses of rMVA (DDMM), one dose of DNA followed by 2 doses of rMVA (DMM), or 3 doses of rMVA (MMM) to HIV-seronegative participants. RESULTS Local and systemic symptoms were mild or moderate. Immune response rates for CD4 + and CD8 + T cells were highest in the DDMM group and lowest in the MMM group (77% vs 43% CD4 + and 42% vs 17% CD8 +). In contrast, response rates for Env binding and neutralizing Ab were highest in the MMM group. The DMM group had intermediate response rates. A 1/10th-dose DDMM regimen induced similar T cell but reduced Ab response rates compared with the full-dose DDMM. CONCLUSIONS MVA62 was well tolerated and elicited different patterns of T cell and Ab responses when administered alone or in combination with the JS7 DNA vaccine.


The Journal of Infectious Diseases | 2011

Prevention of Infection by a Granulocyte-Macrophage Colony-Stimulating Factor Co-Expressing DNA/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine

Lilin Lai; Suefen Kwa; Pamela A. Kozlowski; David C. Montefiori; Guido Ferrari; Welkin E. Johnson; Vanessa M. Hirsch; Francois Villinger; Lakshmi Chennareddi; Patricia L. Earl; Bernard Moss; Rama Rao Amara; Harriet L. Robinson

A simian immunodeficiency virus (SIV) vaccine coexpressing granulocyte-macrophage colony stimulating factor (GM-CSF) prevented infection in 71% of macaques that received 12 rectal challenges. The SIVsmE660 challenge had the tropism of incident human immunodeficiency virus (HIV) infections and a similar genetic distance from the SIV239 vaccine as intraclade HIV isolates. The heterologous prime-boost vaccine regimen used recombinant DNA for priming and recombinant modified vaccinia Ankara for boosting. Co-expression of GM-CSF in the DNA prime enhanced the avidity of elicited immunoglobulin G for SIV envelope glycoproteins, the titers of neutralizing antibody for easy-to-neutralize SIV isolates, and antibody-dependent cellular cytotoxicity. Impressively, the co-expressed GM-CSF increased vaccine-induced prevention of infection from 25% in the non-GM-CSF co-expressing vaccine group to 71% in the GM-CSF co-expressing vaccine group. The prevention of infection showed a strong correlation with the avidity of the elicited Env-specific antibody for the Env of the SIVsmE660 challenge virus (r = 0.9; P < .0001).


Emerging Infectious Diseases | 2017

Prolonged Detection of Zika Virus in Vaginal Secretions and Whole Blood

Kristy O. Murray; Rodion Gorchakov; Anna R. Carlson; Rebecca Berry; Lilin Lai; Muktha S Natrajan; Melissa N. Garcia; Armando Correa; Shital M. Patel; Kjersti Aagaard; Mark J. Mulligan

Infection with Zika virus is an emerging public health crisis. We observed prolonged detection of virus RNA in vaginal mucosal swab specimens and whole blood for a US traveler with acute Zika virus infection who had visited Honduras. These findings advance understanding of Zika virus infection and provide data for additional testing strategies.


Journal of Virology | 2009

Preclinical studies of human immunodeficiency virus/AIDS vaccines: inverse correlation between avidity of anti-Env antibodies and peak postchallenge viremia.

Jun Zhao; Lilin Lai; Rama Rao Amara; David C. Montefiori; Francois Villinger; Lakshmi Chennareddi; Linda S. Wyatt; Bernard Moss; Harriet L. Robinson

ABSTRACT A major challenge for human immunodeficiency virus (HIV)/AIDS vaccines is the elicitation of anti-Env antibodies (Ab) capable of neutralizing the diversity of isolates in the pandemic. Here, we show that high-avidity, but nonneutralizing, Abs can have an inverse correlation with peak postchallenge viremia for a heterologous challenge. Vaccine studies were conducted in rhesus macaques using DNA priming followed by modified vaccinia Ankara boosting with HIV type 1 (HIV-1) immunogens that express virus-like particles displaying CCR5-tropic clade B (strain ADA) or clade C (IN98012) Envs. Rhesus granulocyte-macrophage colony-stimulating factor was used as an adjuvant for enhancing the avidity of anti-Env Ab responses. Challenge was with simian/human immunodeficiency virus (SHIV)-162P3, a CCR5-tropic clade B chimera of SIV and HIV-1. Within the groups receiving the clade B vaccine, a strong inverse correlation was found between the avidity of anti-Env Abs and peak postchallenge viremia. This correlation required the use of native but not gp120 or gp140 forms of Env for avidity assays. The high-avidity Ab elicited by the ADA Env had excellent breadth for the Envs of incident clade B but not clade C isolates, whereas the high-avidity Ab elicited by the IN98012 Env had excellent breadth for incident clade C but not clade B isolates. High-avidity Ab elicited by a SHIV vaccine with a dual-tropic clade B Env (89.6) had limited breadth for incident isolates. Our results suggest that certain Envs can elicit nonneutralizing but high-avidity Ab with broad potential for blunting incident infections of the same clade.


JAMA | 2015

Emergency Postexposure Vaccination With Vesicular Stomatitis Virus–Vectored Ebola Vaccine After Needlestick

Lilin Lai; Richard T. Davey; Allison Beck; Yongxian Xu; Tara N. Palmore; Sarah Kabbani; Susan Rogers; Gary P. Kobinger; Judie B. Alimonti; Charles J. Link; Lewis Rubinson; Ute Ströher; Mark Wolcott; William Dorman; Timothy M. Uyeki; Heinz Feldmann; H. Clifford Lane; Mark J. Mulligan

IMPORTANCE Safe and effective vaccines and drugs are needed for the prevention and treatment of Ebola virus disease, including following a potentially high-risk exposure such as a needlestick. OBJECTIVE To assess response to postexposure vaccination in a health care worker who was exposed to the Ebola virus. DESIGN AND SETTING Case report of a physician who experienced a needlestick while working in an Ebola treatment unit in Sierra Leone on September 26, 2014. Medical evacuation to the United States was rapidly initiated. Given the concern about potentially lethal Ebola virus disease, the patient was offered, and provided his consent for, postexposure vaccination with an experimental vaccine available through an emergency Investigational New Drug application. He was vaccinated on September 28, 2014. INTERVENTIONS The vaccine used was VSVΔG-ZEBOV, a replicating, attenuated, recombinant vesicular stomatitis virus (serotype Indiana) whose surface glycoprotein gene was replaced by the Zaire Ebola virus glycoprotein gene. This vaccine has entered a clinical trial for the prevention of Ebola in West Africa. RESULTS The vaccine was administered 43 hours after the needlestick occurred. Fever and moderate to severe symptoms developed 12 hours after vaccination and diminished over 3 to 4 days. The real-time reverse transcription polymerase chain reaction results were transiently positive for vesicular stomatitis virus nucleoprotein gene and Ebola virus glycoprotein gene (both included in the vaccine) but consistently negative for Ebola virus nucleoprotein gene (not in the vaccine). Early postvaccination cytokine secretion and T lymphocyte and plasmablast activation were detected. Subsequently, Ebola virus glycoprotein-specific antibodies and T cells became detectable, but antibodies against Ebola viral matrix protein 40 (not in the vaccine) were not detected. CONCLUSIONS AND RELEVANCE It is unknown if VSVΔG-ZEBOV is safe or effective for postexposure vaccination in humans who have experienced a high-risk occupational exposure to the Ebola virus, such as a needlestick. In this patient, postexposure vaccination with VSVΔG-ZEBOV induced a self-limited febrile syndrome that was associated with transient detection of the recombinant vesicular stomatitis vaccine virus in blood. Strong innate and Ebola-specific adaptive immune responses were detected after vaccination. The clinical syndrome and laboratory evidence were consistent with vaccination response, and no evidence of Ebola virus infection was detected.


Vaccine | 2012

SIVmac239 MVA vaccine with and without a DNA prime, similar prevention of infection by a repeated dose SIVsmE660 challenge despite different immune responses

Lilin Lai; Sue Fen Kwa; Pamela A. Kozlowski; David C. Montefiori; Tracy L. Nolen; Michael G. Hudgens; Welkin E. Johnson; Guido Ferrari; Vanessa M. Hirsch; Barbara K. Felber; George N. Pavlakis; Patricia L. Earl; Bernard Moss; Rama Rao Amara; Harriet L. Robinson

BACKGROUND Vaccine regimens using different agents for priming and boosting have become popular for enhancing T cell and Ab responses elicited by candidate HIV/AIDS vaccines. Here we use a simian model to evaluate immunogenicity and protective efficacy of a recombinant modified vaccinia Ankara (MVA) vaccine in the presence and absence of a recombinant DNA prime. The simian vaccines and regimens represent prototypes for candidate HIV vaccines currently undergoing clinical testing. METHOD Recombinant DNA and MVA immunogens expressed simian immunodeficiency virus (SIV)mac239 Gag, PR, RT, and Env sequences. Vaccine schedules tested inoculations of MVA at months 0, 2, and 6 (MMM regimen) or priming with DNA at months 0 and 2 and boosting with MVA at months 4 and 6 (DDMM regimen). Twelve weekly rectal challenges with the heterologous SIV smE660 were initiated at 6 months following the last immunization. RESULTS Both regimens elicited similar 61-64% reductions in the per challenge risk of SIVsmE660 transmission despite raising different patterns of immune responses. The DDMM regimen elicited higher magnitudes of CD4 T cells whereas the MMM regimen elicited higher titers and greater avidity Env-specific IgG and more frequent and higher titer SIV-specific IgA in rectal secretions. Both regimens elicited similar magnitudes of CD8 T cells. Magnitudes of T cell responses, specific activities of rectal IgA Ab, and the tested specificities for neutralization and antibody-dependent cellular cytotoxicity did not correlate with risk of infection. However, the avidity of Env-specific IgG had a strong correlation with the per challenge risk of acquisition, but only for the DDMM group. CONCLUSIONS We conclude that for the tested immunogens in rhesus macaques, the simpler MMM regimen is as protective as the more complex DDMM regimen.


The Lancet | 2017

The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): a randomised, partly blinded, placebo-controlled, phase 1 trial

Nadine Rouphael; Michele Paine; Regina Mosley; Sebastien Henry; Devin V. McAllister; Haripriya Kalluri; Winston Pewin; Paula M. Frew; Tianwei Yu; Natalie J Thornburg; Sarah Kabbani; Lilin Lai; Elena V. Vassilieva; Ioanna Skountzou; Richard W. Compans; Mark J. Mulligan; Mark R. Prausnitz; Allison Beck; Srilatha Edupuganti; Sheila Heeke; Colleen F. Kelley; Wendy Nesheim

BACKGROUND Microneedle patches provide an alternative to conventional needle-and-syringe immunisation, and potentially offer improved immunogenicity, simplicity, cost-effectiveness, acceptability, and safety. We describe safety, immunogenicity, and acceptability of the first-in-man study on single, dissolvable microneedle patch vaccination against influenza. METHODS The TIV-MNP 2015 study was a randomised, partly blinded, placebo-controlled, phase 1, clinical trial at Emory University that enrolled non-pregnant, immunocompetent adults from Atlanta, GA, USA, who were aged 18-49 years, naive to the 2014-15 influenza vaccine, and did not have any significant dermatological disorders. Participants were randomly assigned (1:1:1:1) to four groups and received a single dose of inactivated influenza vaccine (fluvirin: 18 μg of haemagglutinin per H1N1 vaccine strain, 17 μg of haemagglutinin per H3N2 vaccine strain, and 15 μg of haemagglutinin per B vaccine strain) (1) by microneedle patch or (2) by intramuscular injection, or received (3) placebo by microneedle patch, all administered by an unmasked health-care worker; or received a single dose of (4) inactivated influenza vaccine by microneedle patch self-administered by study participants. A research pharmacist prepared the randomisation code using a computer-generated randomisation schedule with a block size of 4. Because of the nature of the study, participants were not masked to the type of vaccination method (ie, microneedle patch vs intramuscular injection). Primary safety outcome measures are the incidence of study product-related serious adverse events within 180 days, grade 3 solicited or unsolicited adverse events within 28 days, and solicited injection site and systemic reactogenicity on the day of study product administration through 7 days after administration, and secondary safety outcomes are new-onset chronic illnesses within 180 days and unsolicited adverse events within 28 days, all analysed by intention to treat. Secondary immunogenicity outcomes are antibody titres at day 28 and percentages of seroconversion and seroprotection, all determined by haemagglutination inhibition antibody assay. The trial is completed and registered with ClinicalTrials.gov, number NCT02438423. FINDINGS Between June 23, 2015, and Sept 25, 2015, 100 participants were enrolled and randomly assigned to a group. There were no treatment-related serious adverse events, no treatment-related unsolicited grade 3 or higher adverse events, and no new-onset chronic illnesses. Among vaccinated groups (vaccine via health-care worker administered microneedle patch or intramuscular injection, or self-administered microneedle patch), overall incidence of solicited adverse events (n=89 vs n=73 vs n=73) and unsolicited adverse events (n=18 vs n=12 vs n=14) were similar. Reactogenicity was mild, transient, and most commonly reported as tenderness (15 [60%] of 25 participants [95% CI 39-79]) and pain (11 [44%] of 25 [24-65]) after intramuscular injection; and as tenderness (33 [66%] of 50 [51-79]), erythema (20 [40%] of 50 [26-55]), and pruritus (41 [82%] of 50 [69-91]) after vaccination by microneedle patch application. The geometric mean titres were similar at day 28 between the microneedle patch administered by a health-care worker versus the intramuscular route for the H1N1 strain (1197 [95% CI 855-1675] vs 997 [703-1415]; p=0·5), the H3N2 strain (287 [192-430] vs 223 [160-312]; p=0·4), and the B strain (126 [86-184] vs 94 [73-122]; p=0·06). Similar geometric mean titres were reported in participants who self-administered the microneedle patch (all p>0·05). The seroconversion percentages were significantly higher at day 28 after microneedle patch vaccination compared with placebo (all p<0·0001) and were similar to intramuscular injection (all p>0·01). INTERPRETATION Use of dissolvable microneedle patches for influenza vaccination was well tolerated and generated robust antibody responses. FUNDING National Institutes of Health.


Lancet Infectious Diseases | 2012

Strategies to increase responsiveness to hepatitis B vaccination in adults with HIV-1

Jennifer A. Whitaker; Nadine Rouphael; Srilatha Edupuganti; Lilin Lai; Mark J. Mulligan

HIV and hepatitis B virus co-infection leads to substantially increased morbidity and mortality compared with either infection alone. Immunisation with hepatitis B virus vaccine is the most effective way to prevent the infection in people with HIV; however, these patients have decreased vaccine responses and a short duration of protection compared with immunocompetent individuals. Control of HIV replication with highly active antiretroviral therapy and increased CD4 cell counts are associated with improved immune responses to hepatitis B vaccination. New vaccination strategies, such as increased vaccine dose, use of the intradermal route, and addition of adjuvants, could improve response rates in adults with HIV.


Journal of Virology | 2014

CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus SIV239 vaccine enhances SIV-specific humoral and cellular immunity and improves protection against a heterologous SIVE660 mucosal challenge.

Suefen Kwa; Lilin Lai; Sailaja Gangadhara; Mariam Siddiqui; Vinod B. Pillai; Celia C. LaBranche; Tianwei Yu; Bernard Moss; David C. Montefiori; Harriet L. Robinson; Pamela A. Kozlowski; Rama Rao Amara

ABSTRACT It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1. IMPORTANCE Despite many advances in the field of AIDS research, an effective AIDS vaccine that can prevent infection remains elusive. CD40L is a key stimulator of dendritic cells and B cells and can therefore enhance T cell and antibody responses, but its overly potent nature can lead to adverse effects unless used in small doses. In order to modulate local expression of CD40L at relatively lower levels, we expressed CD40L in a membrane-bound form, along with SIV antigens, in a nucleic acid (DNA) vector. We tested the immunogenicity and efficacy of the CD40L-adjuvanted vaccine in macaques using a heterologous mucosal SIV infection. The CD40L-adjuvanted vaccine enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV T cell responses and improved protection. These results demonstrate that VLP-membrane-bound CD40L serves as a novel adjuvant for an HIV vaccine.

Collaboration


Dive into the Lilin Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Moss

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lakshmi Chennareddi

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linda S. Wyatt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patricia L. Earl

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge